MATH273001

This question paper consists of 11 printed pages, each of which is identified by the reference **MATH2730**.

Statistical tables are provided at the end of this examination paper.

Only approved basic scientific calculators may be used.

©UNIVERSITY OF LEEDS

Examination for the Module MATH2730 (January 2005)

ANALYSIS OF EXPERIMENTAL DATA

Time allowed: 2 hours

Attempt not more than FOUR questions. All questions carry equal marks.

Note that separate statistical tables are **not** provided. Instead, the necessary statistical tables are included on pages 8 to 11 of this paper

MATH2730

1. Consider the one-way fi xed effects ANOVA model

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij} \qquad \qquad i = 1, \dots, t; j = 1, \dots, n,$$

where Y_{ij} is the *j*th response on treatment *i*, μ and α_i represent the overall mean and effect of the *i*th treatment respectively, and ε_{ij} represents random variation with each ε_{ij} being independently $N(0, \sigma^2)$ distributed. Let N = nt be the total number of observations and assume that $\sum_{i=1}^{t} \alpha_i = 0$.

- (a) Denote the mean of the observations in group *i* by $\overline{Y}_{i\bullet} = n^{-1} \sum_{j=1}^{n} Y_{ij}$ and the mean of all the observations by $\overline{Y}_{\bullet\bullet} = N^{-1} \sum_{i=1}^{t} \sum_{j=1}^{n} Y_{ij}$. Write down the distributions of Y_{ij} , $\overline{Y}_{i\bullet}$, and $\overline{Y}_{\bullet\bullet}$.
- (b) Let the error sum of squares SS_E and the mean square error MS_E be defined by

$$SS_E = \sum_{i=1}^t \sum_{j=1}^n (Y_{ij} - \overline{Y}_{i\bullet})^2 \quad \text{and} \quad MS_E = \frac{1}{N-t}SS_E.$$

Show that $E(MS_E) = \sigma^2$ and write down, without proof, the distribution of SS_E/σ^2 .

(c) We wish to test the null hypothesis H_0 : $\alpha_i = 0$ for i = 1, ..., t, against the alternative H_1 : at least one $\alpha_i \neq 0$. Let the sum of squares and mean square for treatments be

$$SS_T = \sum_{i=1}^t n(\overline{Y}_{i\bullet} - \overline{Y}_{\bullet\bullet})^2$$
 and $MS_T = \frac{1}{t-1}SS_T$.

Given your answer to part (b) and the fact that, under H_0 , $SS_T/\sigma^2 \sim \chi^2_{t-1}$, derive the distribution of the test statistic $F = MS_T/MS_E$.

(d) In an experiment to determine whether carbon tetrachloride is an effective anti-worm drug, 20 rats were infested with worm larvae. Eight days later, fi ve rats were treated with each of three different doses of carbon tetrachloride (low, medium, or high doses), while fi ve rats were left untreated. After two more days, the rats were killed and the number of worms in each was counted. The resulting data are given below.

Carbon tetrachloride data

	No carbon	Carbon tetrachloride dose					
	tetrachloride	Low	Medium	High			
	279	378	172	381			
	338	275	335	346			
	334	412	335	340			
	198	265	282	471			
	303	286	250	318			
Totals	1452	1616	1374	1856			

Given that $\sum_{i=1}^{t} \sum_{j=1}^{n} y_{ij}^2 = 2074428$ and $y_{\bullet\bullet} = 6298$, construct an ANOVA table for the carbon tetrachloride data. Is there significant evidence that carbon tetrachloride is an effective anti-worming agent?

2. Consider the one-way fi xed effects ANOVA model

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij} \qquad \qquad i = 1, \dots, t; j = 1, \dots, n,$$

where Y_{ij} is the *j*th response on treatment *i*, μ and α_i represent the overall mean and effect of the *i*th treatment respectively, and the independent $\varepsilon_{ij} \sim N(0, \sigma^2)$ represent random variation. Conventionally, the treatment effects α_i are constrained so that $\sum_i \alpha_i = 0$. Let N = nt be the total number of observations.

(a) Show that the least-squares estimate of μ is given by

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{t} \sum_{j=1}^{n} Y_{ij}$$

and find the least squares estimates $\widehat{\alpha}_i$ of the α_i for $i = 1, \ldots, t$.

(b) The growth rings of 50 mature trees felled in each of four forests were recorded and analysed in R giving the following output, where some of the values have been omitted.

Give the values represented by i to iv. What conclusions can you draw from the ANOVA table?

(c) The average number of rings counted in the trees felled in each forest were as follows. Compute the parameter estimates $\hat{\mu}$ and $\hat{\alpha}_1, \ldots, \hat{\alpha}_4$.

Mean ring counts

Forest of Dean	Grisedale Forest	Kielder Forest	New Forest
96.0	85.6	151.0	125.3

(d) Use the method of least significant difference and Bonferroni's method to compare the average number of rings counted in trees in each of the four forests at the 5% level. What conclusions can you draw from your results?

In carrying out these comparisons, note that the exact values that you need are not available from the standard statistical tables included; use appropriate values close to those needed. In particular, use values with approximately the correct degrees of freedom and signifi cance level.

MATH2730

3. In the two-way fi xed effects ANOVA model, the *k*th response on level *i* of factor A and level *j* of factor B is typically expressed as

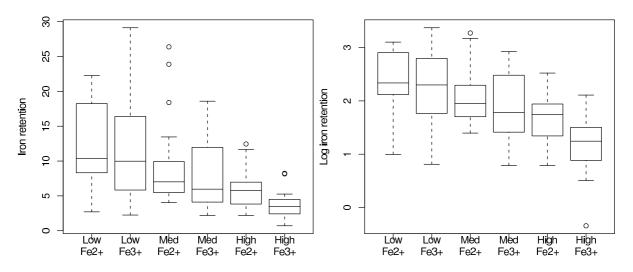
$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk} \tag{1}$$

for i = 1, ..., a, j = 1, ..., b, and k = 1, ..., n.

- (a) Explain what each of the terms on the right hand side of (1) represent, and write down a set of constraints that will ensure that the terms are identifiable.
- (b) For both the two-way random effects model and the two-way mixed effects model, write down equivalent equations to (1). For any terms which appear in your equations but are not in (1), explain what they represent.
- (c) An experiment was conducted to determine the most effective type and dosage of iron to use as a dietary supplement. A total of 108 healthy volunteers took tablets containing low, medium, or high doses of either Fe²⁺ or Fe³⁺ and the percentage of iron retained after one day was recorded.

Boxplots of the retention and of the log retention are shown below. Explain why these indicate that it would be better to analyse the log retention data rather than the retention data.

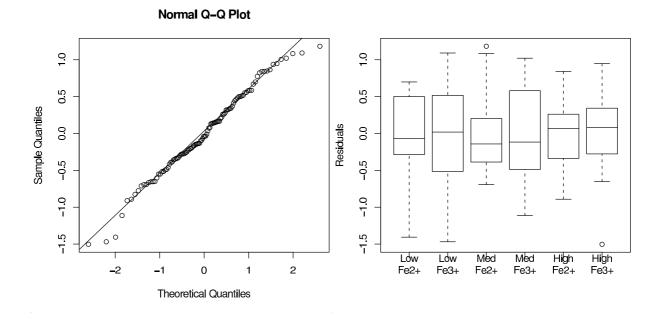
Which of the fi xed, random, or mixed ANOVA models is most appropriate to use here? Justify your choice.



(d) The logged data were analysed in R with the results reproduced below, where some of the values have been omitted. Give the values represented by i to vii. From your completed ANOVA table summarise the conclusions that you can draw from these data.

> iron.aov =	= aov	/(log(re	etention)	~ type	* conc)			
> summary(iron.aov)								
	Df	Sum Sq	Mean Sq I	F value				
type	1	2.074	i	v				
conc	2	15.588	ii	vi				
type:conc	2	0.810	iii	vii				
Residuals	102	35.296	iv					

(e) A QQ plot of the residuals for the ANOVA model fitted in part (d) and boxplots of the residuals in each iron type / dosage group are shown below. Comment on these plots and their implications, if any.



4. The following equation defines a fixed effects nested design model:

$$Y_{ijk} = \mu + \alpha_i + \beta_{j(i)} + \varepsilon_{ijk},$$

where Y_{ijk} denotes the kth response in the *j*th subgroup of the *i*th main group for i = 1, ..., a, j = 1, ..., b, and k = 1, ..., n. Here, μ represents the overall mean, α_i represents the effects of the *i*th main group, $\beta_{j(i)}$ represents the effect of the *j*th subgroup within the *i*th main group, and the random error terms ε_{ijk} are independently $N(0, \sigma^2)$ distributed.

(a) Explain when a nested design is appropriate. Explain what makes the nested model above different to a one-way fixed effects model and say how you could analyse this type of data using a one-way model.

(b) Let the mean squares for main groups, subgroups, and error be defined by

$$\begin{split} MS_{MG} &= \frac{bn}{a-1} \sum_{i=1}^{a} (\overline{Y}_{i \bullet \bullet} - \overline{Y}_{\bullet \bullet \bullet})^2, \\ MS_{SG} &= \frac{n}{a(b-1)} \sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{Y}_{ij \bullet} - \overline{Y}_{i \bullet \bullet})^2, \\ \text{and} \quad MS_E &= \frac{1}{ab(n-1)} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1^n} (Y_{ijk} - \overline{Y}_{ij \bullet})^2, \end{split}$$

where, in the usual notation, $a \bullet$ indicates that a subscript has been summed over and a bar over a variable indicates the mean of that variable.

As usual, $E(MS_E) = \sigma^2$. Write down, without proof, the values of $E(MS_{MG})$ and $E(MS_{SG})$.

There are two hypotheses of potential interest: that there are no main group effects, and that there are no subgroup effects. Formulate both of these as statistical null hypotheses, and give the appropriate alternative hypotheses and test statistics.

Write down the distributions of the test statistics under their null hypotheses and use the expressions for $E(MS_E) = \sigma^2$, $E(MS_{MG})$ and $E(MS_{SG})$ to indicate how these distributions change if the null hypothesis is not true.

(c) In a mill, rope with a nominal breaking strain of 100kg is spun on four different machines, each machine fi lling bobbins on two independent spindles at once. Over a period of one week, fi ve samples of rope are taken from each spindle and the breaking strain tested. The following data (breaking strain in 10 kg units) were gathered.

Machine:	one		two		three			four		
Spindle:	А	В	А	В		А	В	-	А	В
	7.5	14.2	10.7	9.7		8.2	9.9		10.3	8.8
	5.8	15.1	13.1	8.5		10.4	11.1		10.1	9.9
	7.9	13.5	11.2	8.4		6.2	9.6		9.5	11.8
	5.7	14.2	9.5	11.5		10.1	9.0		11.5	10.7
	7.3	13.0	9.4	10.2		7.7	11.1		9.4	10.5
Totals:	34.2	70.0	53.9	48.3		42.6	50.7		50.8	51.7

Rope breaking strain (10s of kgs)

Given the summary statistics $y_{\bullet\bullet\bullet} = 402.2$, $\sum_{ijk} y_{ijk}^2 = 4235.08$, $\sum_{ij} y_{ij\bullet}^2 = 20946.52$, and $\sum_i y_{i\bullet\bullet}^2 = 40513.62$, complete an ANOVA table for these data.

Are there significant differences in the breaking strain of the rope between machines or spindles? What action, if any, would you advise the mill owners to take?

5. Given n pairs of observed data $\{(X_i, Y_i); i = 1, ..., n\}$, where Y_i is an observed value of a response variable with corresponding covariate value X_i , we may use the centred simple linear regression model

$$Y_i = \alpha + \beta (X_i - \overline{X}) + \varepsilon_i.$$
(1)

Assume that the ε_i are independently $N(0, \sigma^2)$ distributed. Recall that the least squares estimates of α and β are

$$\widehat{\alpha} = \overline{Y}$$
 and $\widehat{\beta} = \frac{S_{XY}}{S_{XX}},$ (2)

where $S_{XY} = \sum_{i} (X_i - \overline{X})(Y_i - \overline{Y})$ and $S_{XX} = \sum_{i} (X_i - \overline{X})^2$.

(a) Write (1) in vector form with the parameters α and β being incorporated into a parameter vector θ . Use this vector representation of the simple linear regression model to show that the least squares estimates of α and β are as given in (2).

Briefly explain the advantage of using the vector representation of the simple linear regression model.

(b) Raw material used in the production of synthetic fi bre was stored in a room with no air conditioning. For 12 successive production batches, the relative humidity of the storage area and the moisture content of the resulting fi bre were recorded (both as percentages), giving the following data.

	% Humidity	% Moisture content
	46	12
	53	14
	37	11
	42	13
	34	10
	29	8
	60	17
	44	12
	41	10
	48	15
	33	9
	40	13
Totals:	507	144

Fibre humidity and moisture content

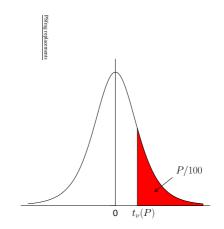
Regarding moisture content as the response, and given that $S_{xy} = 230$ and $S_{xx} = 844.25$, fit a linear regression model to these data and report the fitted regression line. Given that the residual sum of squares about the regression line is $SS_{RES} = 11.34$, find a 95% confidence interval for the regression parameter β .

Comment on the implications of your regression line and confi dence interval.

Percentage Points of the *t*-Distribution

This table gives the percentage points $t_{\nu}(P)$ for various values of P and degrees of freedom ν , as indicated by the fi gure to the right.

The lower percentage points are given by symmetry as $-t_u(P)$, and the probability that $|t| \ge t_u(P)$ is 2P/100.



		Percentage points P								
ι	, 10	5	2.5	1	0.5	0.1	0.05			
1	3.078	6.314	12.706	31.821	63.657	318.309	636.619			
2	1.886	2.920	4.303	6.965	9.925	22.327	31.599			
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924			
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610			
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869			
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959			
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408			
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041			
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781			
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587			
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437			
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318			
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221			
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140			
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073			
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015			
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922			
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819			
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725			
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646			
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551			
50	1.299	1.676	2.009	2.403	2.678	3.261	3.496			
70	1.294	1.667	1.994	2.381	2.648	3.211	3.435			
100	1.290	1.660	1.984	2.364	2.626	3.174	3.390			
\propto	1.282	1.645	1.960	2.326	2.576	3.090	3.291			

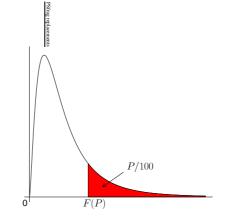
CONTINUED...

10 Percent Points of the *F*-Distribution

This table gives the percentage points $F_{\nu_1,\nu_2}(P)$ for P = 0.10 and degrees of freedom ν_1, ν_2 , as indicated by the fi gure to the right.

The lower percentage points, that is the values $F'_{\nu_1,\nu_2}(P)$ such that the probability that $F \leq F'_{\nu_1,\nu_2}(P)$ is equal to P/100, may be found using the formula

$$F'_{\nu_1,\nu_2}(P) = 1/F_{\nu_1,\nu_2}(P)$$



 $\boldsymbol{\nu}_1$ 1 2 3 4 5 6 12 24 ν_2 ∞ 2 8.526 9.000 9.162 9.243 9.293 9.326 9.408 9.491 9.450 3 5.538 5.462 5.391 5.343 5.309 5.285 5.216 5.176 5.134 4 4.545 4.325 4.191 4.107 4.051 4.010 3.896 3.831 3.761 5 4.060 3.780 3.619 3.520 3.453 3.405 3.268 3.191 3.105 6 2.905 3.776 3.463 3.289 3.181 3.108 3.055 2.818 2.722 7 3.589 3.257 3.074 2.961 2.883 2.827 2.6682.575 2.471 8 2.924 2.668 2.502 2.404 3.458 3.113 2.806 2.726 2.293 9 3.360 3.006 2.813 2.693 2.611 2.551 2.379 2.277 2.159 2.924 2.728 2.605 2.522 2.461 2.284 2.178 10 3.285 2.055 2.209 11 3.225 2.860 2.660 2.536 2.451 2.389 2.100 1.972 12 3.177 2.807 2.606 2.480 2.394 2.331 2.147 2.036 1.904 13 2.763 2.560 2.434 2.347 2.283 2.097 1.983 3.136 1.846 14 3.102 2.726 2.522 2.395 2.307 2.243 2.054 1.938 1.797 15 2.695 2.490 2.273 2.208 1.899 3.073 2.361 2.017 1.755 2.668 2.462 2.178 1.985 16 3.048 2.333 2.244 1.866 1.718 2.437 2.218 17 3.026 2.645 2.308 2.152 1.958 1.836 1.686 3.007 2.624 2.416 2.286 2.196 2.130 1.933 1.810 18 1.657 19 2.990 2.606 2.397 2.266 2.176 2.109 1.912 1.787 1.631 20 2.975 2.589 2.380 2.249 2.158 2.091 1.892 1.767 1.607 25 2.918 2.528 2.317 2.184 2.092 2.024 1.820 1.689 1.518 30 2.489 2.276 2.049 1.980 2.881 2.142 1.773 1.638 1.456 40 2.835 2.440 2.226 2.091 1.997 1.927 1.715 1.574 1.377 50 2.197 1.895 2.809 2.412 2.061 1.966 1.680 1.536 1.327 100 2.756 2.356 2.139 2.002 1.906 1.834 1.612 1.460 1.214 2.706 2.303 2.084 1.945 1.847 1.774 1.546 1.383 1.002 ∞

CONTINUED...

5 Percent Points of the *F*-Distribution

This table gives the percentage points $F_{\nu_1,\nu_2}(P)$ for P = 0.05 and degrees of freedom ν_1, ν_2 , as indicated by the fi gure to the right.

The lower percentage points, that is the values $F'_{\nu_1,\nu_2}(P)$ such that the probability that $F \leq F'_{\nu_1,\nu_2}(P)$ is equal to P/100, may be found using the formula

 $F'_{\nu_1,\nu_2}(P) = 1/F_{\nu_1,\nu_2}(P)$

					$oldsymbol{ u}_1$				
$oldsymbol{ u}_2$	1	2	3	4	5	6	12	24	∞
2	18.513	19.000	19.164	19.247	19.296	19.330	19.413	19.454	19.496
3	10.128	9.552	9.277	9.117	9.013	8.941	8.745	8.639	8.526
4	7.709	6.944	6.591	6.388	6.256	6.163	5.912	5.774	5.628
5	6.608	5.786	5.409	5.192	5.050	4.950	4.678	4.527	4.365
6	5.987	5.143	4.757	4.534	4.387	4.284	4.000	3.841	3.669
7	5.591	4.737	4.347	4.120	3.972	3.866	3.575	3.410	3.230
8	5.318	4.459	4.066	3.838	3.687	3.581	3.284	3.115	2.928
9	5.117	4.256	3.863	3.633	3.482	3.374	3.073	2.900	2.707
10	4.965	4.103	3.708	3.478	3.326	3.217	2.913	2.737	2.538
11	4.844	3.982	3.587	3.357	3.204	3.095	2.788	2.609	2.404
12	4.747	3.885	3.490	3.259	3.106	2.996	2.687	2.505	2.296
13	4.667	3.806	3.411	3.179	3.025	2.915	2.604	2.420	2.206
14	4.600	3.739	3.344	3.112	2.958	2.848	2.534	2.349	2.131
15	4.543	3.682	3.287	3.056	2.901	2.790	2.475	2.288	2.066
16	4.494	3.634	3.239	3.007	2.852	2.741	2.425	2.235	2.010
17	4.451	3.592	3.197	2.965	2.810	2.699	2.381	2.190	1.960
18	4.414	3.555	3.160	2.928	2.773	2.661	2.342	2.150	1.917
19	4.381	3.522	3.127	2.895	2.740	2.628	2.308	2.114	1.878
20	4.351	3.493	3.098	2.866	2.711	2.599	2.278	2.082	1.843
25	4 2 4 2	2 205	2 001	2 750	2 (02	2 400	2 1 6 5	1.064	1 711
25 30	4.242 4.171	3.385 3.316	2.991 2.922	2.759 2.690	2.603 2.534	2.490 2.421	2.165 2.092	1.964 1.887	1.711 1.622
30 40	4.171	3.232	2.922	2.690	2.334 2.449	2.421	2.092	1.887	1.622
40 50	4.083	3.232	2.839	2.608	2.449	2.336	2.005 1.952	1.793	1.309
50 100	4.034 3.936	3.185	2.790	2.337	2.400	2.280	1.932	1.627	1.438
100	5.750	5.007	2.070	2.403	2.303	2.171	1.050	1.027	1.205
∞	3.841	2.996	2.605	2.372	2.214	2.099	1.752	1.517	1.002

CONTINUED...

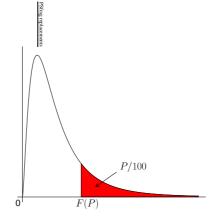
1 Percent Points of the *F*-Distribution

 $\boldsymbol{\nu}_1$

This table gives the percentage points $F_{\nu_1,\nu_2}(P)$ for P = 0.01 and degrees of freedom ν_1, ν_2 , as indicated by the fi gure to the right.

The lower percentage points, that is the values $F'_{\nu_1,\nu_2}(P)$ such that the probability that $F \leq F'_{\nu_1,\nu_2}(P)$ is equal to P/100, may be found using the formula

$$F_{\nu_1,\nu_2}'(P) = 1/F_{\nu_1,\nu_2}(P)$$



1 2 3 4 5 6 12 24 $\boldsymbol{\nu}_2$ ∞ 2 98.503 99.000 99.166 99.249 99.299 99.333 99.416 99.458 99.499 3 34.116 30.817 29.457 28.710 28.237 27.911 27.052 26.598 26.125 4 21.198 18.000 16.694 15.977 15.522 15.207 14.374 13.929 13.463 5 16.258 13.274 12.060 11.392 10.967 10.672 9.888 9.466 9.020 6 9.148 13.745 10.925 9.780 8.746 8.466 7.718 6.880 7.313 7 12.246 9.547 8.451 7.847 7.460 7.191 6.469 6.074 5.650 11.259 8 8.649 7.591 7.006 6.632 6.371 5.667 5.279 4.859 9 10.561 8.022 6.992 6.422 6.057 5.802 5.111 4.729 4.311 7.559 10 10.044 6.552 5.994 5.636 5.386 4.706 4.327 3.909 9.646 11 7.206 6.217 5.668 5.316 5.069 4.397 4.021 3.602 12 9.330 6.927 5.953 5.412 5.064 4.821 4.155 3.780 3.361 13 9.074 5.205 4.862 3.960 3.587 6.701 5.739 4.620 3.165 14 8.862 6.515 5.564 5.035 4.695 4.456 3.800 3.427 3.004 15 3.294 8.683 6.359 5.417 4.893 4.556 4.318 3.666 2.868 16 8.531 6.226 5.292 4.773 4.437 4.202 3.553 3.181 2.753 17 8.400 6.112 5.185 4.669 4.336 4.102 3.455 3.084 2.653 18 8.285 6.013 5.092 4.579 4.248 4.015 3.371 2.999 2.566 19 8.185 5.926 5.010 4.500 4.171 3.939 3.297 2.925 2.489 20 8.096 5.849 4.938 4.431 4.103 3.231 2.859 3.871 2.42125 7.770 5.568 4.675 4.177 3.855 3.627 2.993 2.620 2.169 30 5.390 4.018 2.843 7.562 4.510 3.699 3.473 2.469 2.006 40 7.314 5.179 4.313 3.828 3.514 3.291 2.665 2.288 1.805 50 7.171 5.057 4.199 3.720 3.408 3.186 2.562 2.1831.683 100 6.895 4.824 3.984 3.513 3.206 2.988 2.368 1.983 1.427 6.635 4.605 3.782 3.319 3.017 2.802 2.185 1.791 1.003 ∞