This question paper consists of 3
printed pages, each of which is identi-
Only approved basic scientific
fied by the reference MATH-2640 calculators may be used.

© \subset UNIVERSITY OF LEEDS

Examination for the Module MATH-2640
(January 2007)

Introduction to Optimisation

Time allowed: $\mathbf{2}$ hours

Attempt four questions. All questions carry equal marks.

Q1 (a) Define the gradient, ∇f, of a function $f(x, y, z)$. In the case

$$
f(x, y, z)=x^{2}+2 x y+z^{3},
$$

find ∇f. Find also the directional derivative in the direction

$$
\mathbf{u}=\frac{1}{3} \mathbf{i}+\frac{2}{3} \mathbf{j}+\frac{2}{3} \mathbf{k}
$$

at the point $x=y=z=1$.
(b) $z(x, y)$ is defined implicitly by the relation

$$
z^{3} x-y z+x y^{2}=1 .
$$

Find the partial derivatives z_{x}, z_{y} and $z_{x x}$ in terms of x, y and z. Find also all the possible points with $x=y=1$ that satisfy this relation, and hence find all the possible values of z_{x}, z_{y} and $z_{x x}$ with $x=y=1$.
(c) Find the unit vector normal to the surface

$$
f(x, y, z)=z^{3}+x-2 y^{3}=0
$$

at the point $x=y=z=1$. Hence find the equation of the tangent plane to the surface $f=0$ at $(x, y, z)=(1,1,1)$ in the form $a x+b y+c z=d$.
(d) Given $u=u(x, y)$ and $v=v(x, y)$, define the Jacobian determinant that relates the differentials ($d u, d v$) to the differentials $(d x, d y)$. In the case

$$
u=x^{2}-y^{2}, \quad v=x^{2}+y^{2},
$$

find the conditions that the Jacobian determinant is zero, and explain why it is then not possible to find $(d x, d y)$ in terms of $(d u, d v)$.

Q2 (a) Explain how the leading principal minors of an $n \times n$ matrix are defined.
(b) Find the symmetric matrix H for the quadratic form

$$
Q(x, y, z)=3 x^{2}+3 y^{2}+4 z^{2}+4 x y+2 x z+2 y z=\mathbf{x}^{T} H \mathbf{x}
$$

and use the principal minor test to determine its sign properties.
(c) Given that $\lambda_{1}=1$ is an eigenvalue of the matrix H defined in part (b), find all its eigenvalues and normalized eigenvectors.
Hence write Q as a sum of three squares.

Q3 (a) Write down the Lagrangian, and hence find all the stationary points of the problem

$$
f(x, y, z)=2 x+4 y+3 z^{2}
$$

subject to the constraint

$$
h(x, y, z)=x^{2}+y^{2}+z^{2}-1=0 .
$$

(b) Find the 4×4 Bordered Hessian for the problem specified in part (a), and evaluate the two relevant leading principal minors. Hence classify all the the stationary points found in part (a).

Q4 (a) A rail company sells tickets to first class and economy class customers at prices p_{1} and p_{2} respectively. They can sell $Q_{1}=210-p_{1}$ first class seats, and $Q_{2}=90-p_{2}$ economy class seats. The cost to the company is

$$
C=6000+Q_{1}^{2}+Q_{1} Q_{2}+Q_{2}^{2} .
$$

Find the prices p_{1} and p_{2} that give a stationary value for the profit and establish that it is a maximum. Can the company make a profit, or must it cut costs to avoid running at a loss?
(b) A company produces lampshades at a rate $x^{1 / 2} y^{1 / 2}$ which it sells for $£ 8$ per item. The inputs x and y are positive quantities. The cost of production is $C=x+7 y$ pounds. An equality constraint applies to x and y so that $x+y=5$. Find the critical values of x and y that make the profit a stationary value, and the value of the profit at this stationary value. [You are not required to show that this stationary value is a maximum].

Q5 (a) A function $f(x, y)$ is to be maximised subject to the binding constraint $g(x, y) \leq b$. Explain by means of a sketch why ∇f and ∇g are parallel at a stationary point, and if $\nabla f=\lambda \nabla g$, state what sign λ must have.
(b) Use the Kuhn-Tucker method to maximise

$$
f(x, y, z)=x y z+z
$$

subject to

$$
x^{2}+y^{2}+z^{2} \leq 25, \quad x \geq 0, \quad y \geq 0, \quad \text { and } \quad z \geq 0 .
$$

State also which constraints are binding at this maximum.

