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Fluid Dynamics

Time allowed:2 hours
Answer FOUR of the FIVE questions.

All questions carry equal marks.

1. (a) Explain what is meant by a particle path and a streamUmeler what circumstances are
these the same?

(b) A two-dimensional flow is given by the velocity field

wherex,, a andb are positive constants.
Find the particle pathéz(t), y(t)) for this flow for the particle at2z,,0) at¢ = 0.

Show that this fluid flow is incompressible and calculate theesponding streamfunction
Y (z,t). Hence sketch the streamlines for this flow. Verify that tustflow the streamline
through the point2z,, 0) is the same as the particle path.

Write down the formula for the acceleration of a fluid pagichnd hence calculate the fluid
acceleration at a general poifit, y) at timet.

2. State the conditions under which the fluid velocity may betemi as the gradient of a ve-
locity potential, ¢. Show that, wheny exists and the flow is incompressible, satisfies
Laplace’s equation.

An incompressible, two-dimensional, irrotational flow apees the half-spacge < 0. The
potential satisfies Laplace’s equation and the boundarglitons¢ = 0 atx = 0, 27, and

¢ =sinkx (k > 0)ony =0,and¢y — 0 asy — —oo. Using the method of separable
solutions show that

¢ = exp(ky) sin(kx).

Calculate the velocity(z, y) and the streamfunctioh(x, y). Sketch the streamlines for
k = 1. Show that(V¢) - (V) = 0.

1 CONTINUED...



VI 1 1V v

3. Write down the equation of conservation of mass in Cartes@ordinates for an incom-
pressible two-dimensional flow. State the relationshipvieen the streamfunction(x, y)
and the fluid velocity, and show that this satisfies the equaif conservation of mass. Show
that ¢ is constant along a streamline.

Define the vorticity of a velocity field, and show that for a tdmnensional flow
Vi) = —w

where the vorticityw = (0,0, w).

Two-dimensional flow is set-up between the two coaxial dacaylindersr = a¢ andr = b
(b > a). The vorticity distribution is given by
3
4r

The azimuthal flomuy = 0 onr = a anduy = €2 onr = b. On the assumption that the
streamfunction is solely a function of radial distancefind the streamfunction and hence
the velocity field in polar coordinates. Show that

a® — b

4

I'= /u-dx

around the circle- = b, and show that it is equal to

/ wdS,
S

where S is the area between= ¢ andr = b.

Q:

Calculate directly the circulation

4. Starting from Euler’s equation in the form

0 1
o wVu = —=Vp+g
ot p

show that for a steady flow
p L,
—+gz+-u
p 2
is constant along a streamline, wheres the upward vertical coordinate. (You may quote
any of the vector identities at the end of the examinatiorepap

Show, in addition, that for a steady irrotational flow & 0) that

1
L + gz + =u®
P 2
is constant everywhere in the flow.
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Figure 1: Section of the pipe for Question 4

A long straight pipe of lengtl. has a slowly varying circular cross-section. It is inclirssd
that its axis is at an angle to the horizontal, with its smaller cross-section downveaas
shown in the figure). The radius of the pipe at its upper erhisvhilst that at the lower
end isa. Water (with densityp) is pumped at a steady rate through the pipe such that the
pressure at the top of the pipe2s, and that at the bottom is atmospheric pressyreShow
that the water emerges from the pipe with spéediven by
32 o

U? = 5 (gLsina + %) )

and find the velocity half-way along the pipe.

Water flows in a long horizontal channel. The breadtf the channel is equal t8 except
for an intermediate section where the channel narrows @igdto a minimum widthB,,
before gradually widening again t8. Upstream the fluid velocity is i& and the water is
of depthH .

Write down relations obtained from the conservation of naass$ Bernoulli's equation.

Define the Froude number, and show that if the upstream Froudber is/3/5 then the
breadth of the channeb, and the height of fluidj, are related by

B?> h* (13 10h
2 H2\ 3 3H

Show that the height of the flow downstream of the constnictiaust be eithe% =1or

% = % . In the latter case calculate the depth and velocity of thiema the channel at

the narrowest point.
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For mulae Sheet

Useful Vector | dentities

V xVp =0,
V(qu)—O
V- (pu) = pV-u + u-Vp,
X (pu) = pV X u+ Vp X u,
VX(BXA) A.-VB -B-VA+AV-B-BV-A,
V- (A xB)= BV><A AV x B,
V(AB)=Ax (VxB)+Bx (VxA)+AVB+BVA,
Viu —V(V~u)—v><(v><u),

(Vxu)xu=uVu-—V (3u*).

Cartesian coordinates

Scalarp, vectoru = ue, + ve, + we,

op op op

gradp:Vp:%ex—i-a—yey—i-&ez,
) ou Ov Ow
d1VU—Vu—%+8—y+£>
curlu =V xu = dw _ v e, + Qu _ Ow e, + v _ Qu e
N S \oy 0z) " 0z Ox) " or oy) 7~
p  Op Op
u-Vp u%—l—va—yﬂL 95
2 2 2
e N
ox?  Oy?> 022
V2V GVLCLTC O D PGP GO
wVu = | uy U@y W~ | € Uy U@y wo— ] ey
+ ua—w+va—w+ 8_w e
ox oy 0 ¢
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Cylindrical Polar Coordinates

u = ue, + vey + we,

dp 10p op
Vp Er‘i_;%@—i_aez;
10 10v Ow
Vu= o )+ 25 T o
AR (Ll WY (T D (L
Yw\rae az) " \a: o )T i \ar VY T ae ) %

_ Op wop dp
u-Vp—ua + 8«9+ 9

10 op 10% 0%p
- (TE)W@*@‘

Spherical Polar Coordinates

U = ue, + vey + wey

B (9p 1(9p 1 0Op
VP = are” T r96° o+ rsin€8¢e¢’
1 1 a_w

10 ., 0
v'u__2a_< u)—i_rbln@(%’(vsme) rsind 0¢’
1

a( 1n9)—a— +1 ! %—i( w)
rsind \ 00 we ol sinf 0¢p  Or ©0

+1 2( ) — Ou
r\ar " " a9 ) %
_ Op wvOp w  Op
qu—ua +7‘8«9 rsinf d¢’

Gp 1 0 op 1 0%
) T sno o0 (Smeﬁﬁ) + r2sin 0 9

VXxu=

Divergence Theorem and Stokes Theorem

Let V' be a region bounded by a simple closed surface S withautward normaln

/u~ndS:/V-udV, /pndS:/VpdV, /u X ndS = —/ V x udV.
S 1% s 1% s 1%

Let C' be a simple closed curve spanned by a surface S with unit narma

/Cu-dx = /S (V x u)-ndS, /dex = — /S (Vp) x ndS.

END



