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Answer FOUR of the FIVE questions.

All questions carry equal marks.

1. (a) Explain what is meant by a particle path and a streamline.Under what circumstances are
these the same?

(b) A two-dimensional flow is given by the velocity field

u =

(

y

b2
,−

(x− x0)

a2

)

,

wherex0 , a andb are positive constants.

Find the particle paths(x(t), y(t)) for this flow for the particle at(2x0, 0) at t = 0.

Show that this fluid flow is incompressible and calculate the corresponding streamfunction
ψ(x, t). Hence sketch the streamlines for this flow. Verify that for this flow the streamline
through the point(2x0, 0) is the same as the particle path.

Write down the formula for the acceleration of a fluid particle, and hence calculate the fluid
acceleration at a general point(x, y) at timet.

2. State the conditions under which the fluid velocity may be written as the gradient of a ve-
locity potential,φ. Show that, whenφ exists and the flow is incompressible,φ satisfies
Laplace’s equation.

An incompressible, two-dimensional, irrotational flow occupies the half-spacey < 0. The
potential satisfies Laplace’s equation and the boundary conditionsφ = 0 at x = 0, 2π , and
φ = sin kx (k > 0) on y = 0, andφ → 0 as y → −∞ . Using the method of separable
solutions show that

φ = exp(ky) sin(kx).

Calculate the velocityu(x, y) and the streamfunctionψ(x, y). Sketch the streamlines for
k = 1. Show that(∇φ) · (∇ψ) = 0.
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3. Write down the equation of conservation of mass in Cartesiancoordinates for an incom-
pressible two-dimensional flow. State the relationship between the streamfunctionψ(x, y)
and the fluid velocity, and show that this satisfies the equation of conservation of mass. Show
thatψ is constant along a streamline.

Define the vorticity of a velocity field, and show that for a two-dimensional flow

∇2ψ = −ω

where the vorticityω = (0, 0, ω).

Two-dimensional flow is set-up between the two coaxial circular cylindersr = a andr = b
(b > a). The vorticity distribution is given by

ω =
a3

4r
− r2.

The azimuthal flowuθ = 0 on r = a anduθ = Ω on r = b. On the assumption that the
streamfunction is solely a function of radial distance,r , find the streamfunction and hence
the velocity field in polar coordinates. Show that

Ω =
a3 − b3

4
.

Calculate directly the circulation

Γ =

∫

u·dx

around the circler = b, and show that it is equal to
∫

S

ωdS,

whereS is the area betweenr = a andr = b.

4. Starting from Euler’s equation in the form

∂u

∂t
+ u·∇u = −

1

ρ
∇p+ g

show that for a steady flow
p

ρ
+ gz +

1

2
u2

is constant along a streamline, wherez is the upward vertical coordinate. (You may quote
any of the vector identities at the end of the examination paper).

Show, in addition, that for a steady irrotational flow (ω = 0) that

p

ρ
+ gz +

1

2
u2

is constant everywhere in the flow.
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Figure 1: Section of the pipe for Question 4

A long straight pipe of lengthL has a slowly varying circular cross-section. It is inclinedso
that its axis is at an angleα to the horizontal, with its smaller cross-section downwards (as
shown in the figure). The radius of the pipe at its upper end is2a whilst that at the lower
end isa. Water (with densityρ) is pumped at a steady rate through the pipe such that the
pressure at the top of the pipe is2pa and that at the bottom is atmospheric pressurepa . Show
that the water emerges from the pipe with speedU given by

U2 =
32

15

(

gL sinα +
pa

ρ

)

,

and find the velocity half-way along the pipe.

5. Water flows in a long horizontal channel. The breadth,b, of the channel is equal toB except
for an intermediate section where the channel narrows gradually to a minimum widthBm

before gradually widening again toB . Upstream the fluid velocity is isU and the water is
of depthH .

Write down relations obtained from the conservation of massand Bernoulli’s equation.

Define the Froude number, and show that if the upstream Froudenumber is
√

3/5 then the
breadth of the channel,b, and the height of fluid,h, are related by

B2

b2
=

h2

H2

(

13

3
−

10h

3H

)

Show that the height of the flow downstream of the constriction must be eitherh
H

= 1 or
h
H

= 3+
√

129

20
. In the latter case calculate the depth and velocity of the water in the channel at

the narrowest point.
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Formulae Sheet

Useful Vector Identities

∇×∇p = 0,

∇· (∇× u) = 0,

∇· (pu) = p∇·u + u·∇p,

∇× (pu) = p∇× u + ∇p× u,

∇× (B × A) = A·∇B −B·∇A + A∇·B −B∇·A,

∇· (A × B) = B·∇ × A− A·∇ × B,

∇ (A·B) = A × (∇× B) + B × (∇× A) + A·∇B + B·∇A,

∇2
u = ∇ (∇·u) −∇× (∇× u) ,

(∇× u) × u = u·∇u −∇
(

1

2
u

2
)

.

Cartesian coordinates

Scalarp, vectoru = uex + vey + wez

gradp = ∇p =
∂p

∂x
ex +

∂p

∂y
ey +

∂p

∂z
ez,

divu = ∇·u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
,

curlu = ∇× u =

(

∂w

∂y
−
∂v

∂z

)

ex +

(

∂u

∂z
−
∂w

∂x

)

ey +

(

∂v

∂x
−
∂u

∂y

)

ez,

u·∇p = u
∂p

∂x
+ v

∂p

∂y
+ w

∂p

∂z
,

∇2p =
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
,

u·∇u =

(

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

ex +

(

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

ey

+

(

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

ez
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Cylindrical Polar Coordinates

u = uer + veθ + wez

∇p =
∂p

∂r
er +

1

r

∂p

∂θ
eθ +

∂p

∂z
ez,

∇·u =
1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+
∂w

∂z
,

∇× u =

(

1

r

∂w

∂θ
−
∂v

∂z

)

er +

(

∂u

∂z
−
∂w

∂r

)

eθ +
1

r

(

∂

∂r
(rv) −

∂u

∂θ

)

ez,

u·∇p = u
∂p

∂r
+
v

r

∂p

∂θ
+ w

∂p

∂z
,

∇2p =
1

r

∂

∂r

(

r
∂p

∂r

)

+
1

r2

∂2p

∂θ2
+
∂2p

∂z2
.

Spherical Polar Coordinates

u = uer + veθ + weφ

∇p =
∂p

∂r
er +

1

r

∂p

∂θ
eθ +

1

r sin θ

∂p

∂φ
eφ,

∇·u =
1

r2

∂

∂r

(

r2u
)

+
1

r sin θ

∂

∂θ
(v sin θ) +

1

r sin θ

∂w

∂φ
,

∇× u =
1

r sin θ

(

∂

∂θ
(w sin θ) −

∂v

∂φ

)

er +
1

r

(

1

sin θ

∂u

∂φ
−
∂

∂r
(rw)

)

eθ

+
1

r

(

∂

∂r
(rv) −

∂u

∂θ

)

eφ,

u·∇p = u
∂p

∂r
+
v

r

∂p

∂θ
+

w

r sin θ

∂p

∂φ
,

∇2p =
1

r2

∂

∂r

(

r2
∂p

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂p

∂θ

)

+
1

r2 sin θ

∂2p

∂φ2
.

Divergence Theorem and Stokes Theorem

Let V be a region bounded by a simple closed surface S with unitoutward normaln
∫

S

u·ndS =

∫

V

∇·udV,

∫

S

pndS =

∫

V

∇pdV,

∫

S

u × ndS = −

∫

V

∇× udV.

Let C be a simple closed curve spanned by a surface S with unit normal n
∫

C

u·dx =

∫

S

(∇× u) ·ndS,

∫

C

pdx = −

∫

S

(∇p) × ndS.
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