(C) UNIVERSITY OF LEEDS

Examination for the Module MATH2620
(May 2006)

Fluid Dynamics

Time allowed: 2 hours
Answer FOUR of the FIVE questions.
All questions carry equal marks.

1. Explain what is meant by a particle path and a streamline. Under what circumstances are these the same?

A two-dimensional flow is given by the velocity field

$$
\boldsymbol{u}=(x(1+t), y)
$$

Find the particle paths $(x(t), y(t))$ for this flow for the particle at $(1,1)$ at $t=0$. Hence show that $y(1)=e^{-\frac{1}{2}} x(1)$. Find and sketch the streamline that passes through the point $(1,1)$ at $t=0$.
Calculate $\boldsymbol{\nabla} \cdot \boldsymbol{u}$ for this flow and hence show that the flow is not incompressible.
Write down the formula for the acceleration of a fluid particle, and hence calculate the fluid acceleration at a general point (x, y) at time t.
2. State the conditions under which the fluid velocity may be written as the gradient of a velocity potential, ϕ. Show that, when ϕ exists and the flow is incompressible, ϕ satisfies Laplace's equation.
Separable solutions of Laplace's equation exist in plane-polar co-ordinates (r, θ) of the form $\phi(r, \theta)=f(r) \cos (\theta)$. Find the general solutions for $f(r)$.
Hence show that the potential given by

$$
\phi(r, \theta)=\left(U r+\frac{U a^{2}}{r}\right) \cos \theta
$$

represents the unique potential for flow around a cylinder of radius a with uniform flow U in the x-direction at $x= \pm \infty$. (Hint: show that this potential does satisfy Laplace's equation and the required boundary conditions on the surface of the cylinder and at infinity.)

Show that

$$
u_{\theta}=-U\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta
$$

By integrating this around a circle of radius $b>a$ show that the circulation around the cylinder

$$
\Gamma=\oint \mathbf{u} \cdot d \mathbf{x}
$$

is zero.
3. Define the vorticity $\boldsymbol{\omega}$ of a fluid with velocity \boldsymbol{u}. Show that for two-dimensional incompressible flows where $\boldsymbol{u}=(u, v, 0)$ is independent of z

$$
\begin{equation*}
\boldsymbol{\omega}=\left(0,0,-\nabla^{2} \psi\right) \tag{1}
\end{equation*}
$$

where ψ is the streamfunction that you should relate to u and v.
Consider the flow $\boldsymbol{u}=u_{r} \hat{\boldsymbol{r}}+u_{\theta} \hat{\boldsymbol{\theta}}$ in cylindrical polars (r, θ, z) where

$$
u_{r}=\frac{U a^{2}}{r^{2}} \cos \theta, \quad u_{\theta}=\frac{U a^{2}}{r^{2}} \sin \theta,
$$

Calculate $\boldsymbol{\omega}$ and the streamfunction ψ and verify the relationship derived in equation (1).
Starting from Euler's equation in the form

$$
\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}=-\frac{1}{\rho} \nabla p,
$$

derive the vorticity equation

$$
\frac{\partial \boldsymbol{\omega}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{\omega}=\boldsymbol{\omega} \cdot \nabla \boldsymbol{u}
$$

Hence show that the vorticity of a fluid element does not change as it moves in a planar flow.
4. Starting from Euler's equation in the form

$$
\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}=-\frac{1}{\rho} \nabla p+\mathbf{g}
$$

show that for a steady flow

$$
\frac{p}{\rho}+g z+\frac{1}{2} u^{2}
$$

is constant along a streamline, where z is the upward vertical coordinate. (You may quote any of the vector identities at the end of the examination paper).
Show, in addition, that for a steady irrotational flow $(\boldsymbol{\omega}=0)$ that

$$
\frac{p}{\rho}+g z+\frac{1}{2} u^{2}
$$

Figure 1: Section of the pipe for Question 4
is constant everywhere in the flow.
An axisymmetric vertical pipe of variable cross-section (as shown in Figure 1) is filled with water. The cross-section is given by $r=a(\cosh \alpha z)^{\frac{1}{4}}$, where a and α are positive constants, (r, θ, z) are cylindrical polar co-ordinates with the z-axis vertical, and gravity acting downwards so $\mathbf{g}=(0,0,-g)$. The water is incompressible and is in steady irrotational flow along the pipe, with a volume Q of fluid passing every cross-section per unit time. Assuming that the vertical component of velocity u_{z} depends on z only and that horizontal velocities are small and can be neglected, calculate u_{z} as a function of z.
Hence or otherwise show that the water pressure will not be a monotonic function of z if

$$
\alpha Q^{2}>4 \pi^{2} a^{4} g
$$

5. Water flows in the x-direction in a long channel of rectangular cross-section, whose base lies on the plane $z=0$ except for a small smooth hump whose maximum height is d_{m}. The equation of the hump is $z=d(x)$. The flow is steady and smooth throughout the channel. Far upstream of the hump the flow has velocity U and the surface of the water lies at $z=H$.

Calculate the level of the water surface above the bump (denoted $\delta(x)$, where $\delta(x)$ is the height of the water above the value it would assume if there were no bump) when $H \gg d_{m}$ demonstrating that it is given by the equation

$$
\delta=\frac{U^{2}}{2 g}\left(1-\left(\frac{H}{H+\delta-d}\right)^{2}\right)
$$

Show that for small d and δ the surface may rise or fall as it flows over the bump depending upon the value of the upstream Froude number, $F=\frac{U}{\sqrt{g H}}$.
Hint: you may use the expansion

$$
\left(\frac{H}{H+\delta-d}\right)^{2} \approx 1-\frac{2(\delta-d)}{H}
$$

Far downstream of the hump the water level is at height $7 H / 16$. Show that the upstream Froude number, F, must be equal to $\left(\frac{49}{184}\right)^{1 / 2}$, and find the value far downstream. At what point is the Froude number equal to unity?

Formulae Sheet

Useful Vector Identities

$$
\begin{aligned}
\nabla \times \nabla p & =0 \\
\nabla \cdot(\nabla \times \boldsymbol{u}) & =0 \\
\nabla \cdot(p \boldsymbol{u}) & =p \nabla \cdot \boldsymbol{u}+\boldsymbol{u} \cdot \nabla p \\
\nabla \times(p \boldsymbol{u}) & =p \nabla \times \boldsymbol{u}+\nabla p \times \boldsymbol{u} \\
\nabla \times(\mathbf{B} \times \mathbf{A}) & =\mathbf{A} \cdot \nabla \mathbf{B}-\mathbf{B} \cdot \nabla \mathbf{A}+\mathbf{A} \nabla \cdot \mathbf{B}-\mathbf{B} \nabla \cdot \mathbf{A} \\
\nabla \cdot(\mathbf{A} \times \mathbf{B}) & =\mathbf{B} \cdot \nabla \times \mathbf{A}-\mathbf{A} \cdot \nabla \times \mathbf{B} \\
\nabla(\mathbf{A} \cdot \mathbf{B}) & =\mathbf{A} \times(\nabla \times \mathbf{B})+\mathbf{B} \times(\nabla \times \mathbf{A})+\mathbf{A} \cdot \nabla \mathbf{B}+\mathbf{B} \cdot \nabla \mathbf{A} \\
\nabla^{2} \boldsymbol{u} & =\nabla(\nabla \cdot \boldsymbol{u})-\nabla \times(\nabla \times \boldsymbol{u}) \\
(\nabla \times \boldsymbol{u}) \times \boldsymbol{u} & =\boldsymbol{u} \cdot \nabla \boldsymbol{u}-\nabla\left(\frac{1}{2} \boldsymbol{u}^{2}\right)
\end{aligned}
$$

Cartesian coordinates

Scalar p, vector $\boldsymbol{u}=u \mathbf{e}_{x}+v \mathbf{e}_{y}+w \mathbf{e}_{z}$

$$
\begin{aligned}
\operatorname{grad} p=\nabla p & =\frac{\partial p}{\partial x} \mathbf{e}_{x}+\frac{\partial p}{\partial y} \mathbf{e}_{y}+\frac{\partial p}{\partial z} \mathbf{e}_{z}, \\
\operatorname{div} \boldsymbol{u}=\nabla \cdot \boldsymbol{u}= & \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}, \\
\operatorname{curl} \boldsymbol{u}=\nabla \times \boldsymbol{u}= & \left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right) \mathbf{e}_{x}+\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right) \mathbf{e}_{y}+\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \mathbf{e}_{z}, \\
\boldsymbol{u} \cdot \nabla p= & u \frac{\partial p}{\partial x}+v \frac{\partial p}{\partial y}+w \frac{\partial p}{\partial z}, \\
\nabla^{2} p= & \frac{\partial^{2} p}{\partial x^{2}}+\frac{\partial^{2} p}{\partial y^{2}}+\frac{\partial^{2} p}{\partial z^{2}}, \\
\boldsymbol{u} \cdot \nabla \boldsymbol{u}= & \left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right) \mathbf{e}_{x}+\left(u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right) \mathbf{e}_{y} \\
& +\left(u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right) \mathbf{e}_{z}
\end{aligned}
$$

Cylindrical Polar Coordinates

$\boldsymbol{u}=u \mathbf{e}_{r}+v \mathbf{e}_{\theta}+w \mathbf{e}_{z}$

$$
\begin{aligned}
\nabla p & =\frac{\partial p}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial p}{\partial \theta} \mathbf{e}_{\theta}+\frac{\partial p}{\partial z} \mathbf{e}_{z} \\
\nabla \cdot \boldsymbol{u} & =\frac{1}{r} \frac{\partial}{\partial r}(r u)+\frac{1}{r} \frac{\partial v}{\partial \theta}+\frac{\partial w}{\partial z} \\
\nabla \times \boldsymbol{u} & =\left(\frac{1}{r} \frac{\partial w}{\partial \theta}-\frac{\partial v}{\partial z}\right) \mathbf{e}_{r}+\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial r}\right) \mathbf{e}_{\theta}+\frac{1}{r}\left(\frac{\partial}{\partial r}(r v)-\frac{\partial u}{\partial \theta}\right) \mathbf{e}_{z} \\
\boldsymbol{u} \cdot \nabla p & =u \frac{\partial p}{\partial r}+\frac{v}{r} \frac{\partial p}{\partial \theta}+w \frac{\partial p}{\partial z} \\
\nabla^{2} p & =\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial p}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} p}{\partial \theta^{2}}+\frac{\partial^{2} p}{\partial z^{2}} .
\end{aligned}
$$

Spherical Polar Coordinates

$$
\begin{aligned}
& \boldsymbol{u}=u \mathbf{e}_{r}+v \mathbf{e}_{\theta}+w \mathbf{e}_{\phi} \\
& \nabla p= \frac{\partial p}{\partial r} \mathbf{e}_{r}+\frac{1}{r} \frac{\partial p}{\partial \theta} \mathbf{e}_{\theta}+\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi} \mathbf{e}_{\phi}, \\
& \nabla \cdot \boldsymbol{u}= \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(v \sin \theta)+\frac{1}{r \sin \theta} \frac{\partial w}{\partial \phi}, \\
& \nabla \times \boldsymbol{u}= \frac{1}{r \sin \theta}\left(\frac{\partial}{\partial \theta}(w \sin \theta)-\frac{\partial v}{\partial \phi}\right) \mathbf{e}_{r}+\frac{1}{r}\left(\frac{1}{\sin \theta} \frac{\partial u}{\partial \phi}-\frac{\partial}{\partial r}(r w)\right) \mathbf{e}_{\theta} \\
&+\frac{1}{r}\left(\frac{\partial}{\partial r}(r v)-\frac{\partial u}{\partial \theta}\right) \mathbf{e}_{\phi}, \\
& \boldsymbol{u} \cdot \nabla p= u \frac{\partial p}{\partial r}+\frac{v}{r} \frac{\partial p}{\partial \theta}+\frac{w}{r \sin \theta} \frac{\partial p}{\partial \phi}, \\
& \nabla^{2} p= \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial p}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial p}{\partial \theta}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial^{2} p}{\partial \phi^{2}} .
\end{aligned}
$$

Divergence Theorem and Stokes Theorem

Let V be a region bounded by a simple closed surface S with unit outward normal \mathbf{n}

$$
\int_{S} \boldsymbol{u} \cdot \mathbf{n} \mathrm{~d} S=\int_{V} \nabla \cdot \boldsymbol{u} \mathrm{~d} V, \quad \int_{S} p \mathbf{n} \mathrm{~d} S=\int_{V} \nabla p d V, \quad \int_{S} \boldsymbol{u} \times \mathbf{n} \mathrm{d} S=-\int_{V} \nabla \times \boldsymbol{u} d V
$$

Let C be a simple closed curve spanned by a surface S with unit normal \mathbf{n}

$$
\int_{C} \boldsymbol{u} \cdot \mathrm{~d} \mathbf{x}=\int_{S}(\nabla \times \boldsymbol{u}) \cdot \mathbf{n} \mathrm{d} S, \quad \int_{C} p \mathrm{~d} \mathbf{x}=-\int_{S}(\nabla p) \times \mathbf{n} \mathrm{d} S .
$$

