MATH260001

© UNIVERSITY OF LEEDS
 Examination for the Module MATH2600
 (January 2008)

Numerical Analysis

Time allowed: 2 hours

Answer FOUR of the FIVE questions.
All questions carry equal marks.

1. We shall look for approximations to the unique root of the function

$$
f(x)=\cos (x)-1, \quad x \in[-\pi / 2, \pi / 2] .
$$

(a) Find the value of the root of f in $[-\pi / 2, \pi / 2]$ and write down the mapping function $g(x)$ of the iterative map $p_{n+1}=g\left(p_{n}\right)$ for Newton's method.
Starting with an initial guess of $p_{0}=1.5$, calculate the next four approximations to the solution $f(x)=0$ using Newton's method. For each iteration calculate the ratio $\left|p_{n} / p_{n-1}\right|$; what do these values suggest?
(b) Expand $g\left(p_{n}\right)$ as a Taylor series of in powers of p_{n} and find the convergence rate of the iteration.
Hint: you may want to use the approximations

$$
\sin x=x+O\left(x^{3}\right) \quad \text { and } \quad \cos x=1-\frac{x^{2}}{2}+O\left(x^{4}\right)
$$

(c) In order to improve the convergence rate of Newton's method for solving $f(x)=0$, let us define the function

$$
h(x)=\frac{f(x)}{f^{\prime}(x)} .
$$

Write down the general step for solving $h(x)=0$ using Newton's method and, taking $p_{0}=1.5$, calculate the next three approximations. For each iteration evaluate the ratio $\left|p_{n} / p_{n-1}^{3}\right|$.
(d) By means of a third order Taylor expansion, determine the convergence rate of the improved Newton's algorithm.
2. (a) Define $L_{i}(x)$, the $i^{\text {th }}$ Lagrange polynomial of degree $(n-1)$, for n distinct points $x_{1}, x_{2}, \ldots, x_{n}$, and give the general expression of the Lagrange interpolation polynomial, for a function $f(x)$.
The value of a function f is known at the points $x=1,3$ and 4 and is given by

$$
\begin{equation*}
f(1)=0, \quad f(3)=4, \quad f(4)=9 \tag{1}
\end{equation*}
$$

Find the quadratic polynomial $P(x)$ that interpolates $f(x)$ through these points and simplify its expression.
(b) A function $S(x)$ is defined on the interval [1,4] by

$$
S(x)=\left\{\begin{array}{l}
S_{1}(x)=x^{2}-2 x+1, \quad x \in[1,3), \\
S_{2}(x)=a(x-3)^{2}+b(x-3)+c, \quad x \in[3,4] .
\end{array}\right.
$$

Determine the constants a, b and c if S is a quadratic spline through the points in equation (1) - i.e. S interpolates f and is continuous with a continuous first derivative at the inner point.
(c) Let

$$
P(x)=\sum_{i=1}^{n} x_{i}^{m} L_{i}(x),
$$

for some positive integer $m \leq(n-1)$ and, using properties of Lagrange polynomials, show that $P\left(x_{k}\right)=x_{k}^{m}$. Show further, from uniqueness of Lagrange interpolation, that $P(x)=x^{m}$.
(d) Let $f(x)=a x^{3}+b x^{2}+c x+d, a \neq 0$. Without calculation, give the expression of the cubic polynomial $P(x)$ that interpolates f through four points $x_{1}<x_{2}<$ $x_{3}<x_{4}$. Check whether $P(x)$ satisfies all the conditions to be the natural cubic spline that interpolates $f(x)$ through the same points.
3. (a) The trapezium rule for integrating a function over the interval $[0, h]$ can be written in the form,

$$
\begin{equation*}
\int_{0}^{h} f(x) \mathrm{d} x \approx w_{0} f(0)+w_{h} f(h) \tag{2}
\end{equation*}
$$

where w_{0} and w_{h} are the weights. Use the method of undetermined coefficients to find the constants w_{0} and w_{h}. Then, using a suitable quadratic polynomial, obtain the error term in the form $K f^{\prime \prime}(\xi)$ for some value $\xi \in(0, h)$ where K is a constant to be determined.
(b) We shall construct the composite trapezium rule, including the error term, for approximating the definite integral

$$
\int_{a}^{b} f(x) \mathrm{d} x
$$

Break the interval $[a, b]$ into n subintervals of constant width h and use the trapezium rule (2) on each subinterval to derive the composite trapezium rule.

Apply the Intermediate Value Theorem to the function $n f^{\prime \prime}(x)$ on (a, b) to show that the error term is of the form

$$
\begin{equation*}
E=-h^{2} \frac{b-a}{12} f^{\prime \prime}(\xi) \text { for some } \xi \in(a, b) \tag{3}
\end{equation*}
$$

(c) Determine from equation (3) the value of h required to approximate

$$
I=\int_{0}^{1} \mathrm{e}^{x} \mathrm{~d} x
$$

to within 10^{-1}, using the composite trapezium rule. Show that $n=2$ subintervals are required to achieve this accuracy and calculate an approximation of the integral I using $n=2$ in the composite trapezium rule. Show that the error in the approximation is consistent with the required accuracy.
4. (a) Let $Y(t)$ be the exact solution of the first order ordinary differential equation

$$
\begin{equation*}
\frac{\mathrm{d} Y}{\mathrm{~d} t}=f(t, Y) \tag{4}
\end{equation*}
$$

By integrating equation (4) over the interval $\left[t_{n}, t_{n+1}\right]$ and approximating $f(t, Y)$ as a constant derive the forward Euler approximation,

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right),
$$

where $h=t_{k+1}-t_{k}($ for all $k)$.
(b) The exact solution of the initial value problem

$$
\frac{d Y}{d t}=2 t, \quad Y(0)=0
$$

is $Y(t)=t^{2}$. Calculate the three first steps of the forward Euler method using a step-size of $h=1 / 2$. At each step calculate the absolute error from the exact solution.
(c) Define the local truncation error of the numerical scheme and obtain its expression by means of a Taylor expansion of $Y\left(t_{n+1}\right)$ in powers of h. Combine this Taylor expansion and the forward Euler approximation to show that the global error of the method is

$$
\begin{equation*}
E_{n+1}=E_{n}\left[1+h \frac{\partial f\left(t_{n}, z_{n}\right)}{\partial z}\right]+\frac{h^{2}}{2} Y^{\prime \prime}\left(\xi_{n+1}\right) \tag{5}
\end{equation*}
$$

where $E_{n}=Y\left(t_{n}\right)-y_{n}$.
Hints: The Mean Value Theorem implies that there exists z_{n} between $Y\left(t_{n}\right)$ and y_{n} such that

$$
f\left(t_{n}, Y\left(t_{n}\right)\right)-f\left(t_{n}, y_{n}\right)=\frac{\partial f\left(t_{n}, z_{n}\right)}{\partial z}\left(Y\left(t_{n}\right)-y_{n}\right)
$$

Check the formula (5) against the errors calculated in question 4(b).
5. (a) Explain what is meant by an $L U$-factorisation of a square matrix. Then, showing your method of working, find the $L U$-factorisation of the matrix,

$$
\left(\begin{array}{ccc}
2 & -1 & 1 \\
3 & 3 & 9 \\
3 & 3 & 5
\end{array}\right)
$$

and calculate its determinant. Demonstrate how this factorisation may be used to solve the linear system,

$$
\left(\begin{array}{ccc}
2 & -1 & 1 \\
3 & 3 & 9 \\
3 & 3 & 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-4 \\
-3 \\
5
\end{array}\right)
$$

(b) Show that the matrix,

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 4 & 0 \\
0 & 1 & -1
\end{array}\right)
$$

cannot be factored into the product $L U$. Find the permutation matrix P, such that $M=P A$ can be factored. Find the $L U$-factorisation of M.

END

