MATH260001

This question paper consists of 3
Only approved basic
printed pages, each of which is identified by the reference MATH260001.
scientific calculators may be used.

(c) UNIVERSITY OF LEEDS

Examination for the Module MATH2600
(January 2007)

Numerical Analysis

Time allowed: 2 hours
Answer FOUR of the FIVE questions.
All questions carry equal marks.

1. (a) Show that the function $f(x)=\exp (x)-\frac{3}{2}$ has only one zero. Write down the general step of Newton's method for solving $f(x)=0$. Starting with the an initial guess of $p_{0}=0$, calculate the next three approximations to the solution of $f(x)=\exp (x)-\frac{3}{2}=0$ using Newton's method. For each iteration calculate the error from the exact solution.
(b) Write down the general step for solving $f(x)=\exp (x)-\frac{3}{2}=0$ using the Secant method and taking $p_{0}=0$ and $p_{1}=0.5$ calculate two further approximations. For each iteration calculate the error from the exact solution.
(c) Write down the map $p_{n+1}=g\left(p_{n}\right)$ corresponding to the Newton's method solution of $f(x)=\exp (x)-\frac{3}{2}=0$. Show that $g^{\prime}(x)=0$ at the fixed point. Sketch a plot of $g(x)$ for $x>0$.
State the fixed point theorem giving the conditions that guarantee the iteration scheme $x_{n+1}=g\left(x_{n}\right)$ has a unique fixed point in the interval $[a, b]$. Show that $g(x)$ satisfies the conditions of this theorem in the interval [0,0.5].
2. (a) Write down the Lagrange form of the interpolating polynomial $P(x)$ that satisfies

$$
P(x)=f(x) \quad \text { for } x=x_{1}, x_{2} \ldots x_{n}
$$

Find the form of the polynomial that interpolates $f(x)=\frac{1}{x}$ through the points $x=0.5,1$ and 3 . (You do not need to simplify it). Use this polynomial to estimate the value of $f(2)$ and find the error from the actual value.
Using the error formula for Lagrange interpolation,

$$
f(x)=P(x)+\frac{1}{n!} \prod_{i=1}^{n}\left(x-x_{i}\right) \frac{d^{n} f}{d x^{n}}(\xi), \quad \text { for some } \xi \in\left(x_{1}, x_{n}\right)
$$

find upper and lower bounds for the error in your estimate above. How does this compare with the actual error?
Find the form of the error term when there are n interpolation points in the interval $[0.5,3]$. Use this formula to calculate error bounds on the estimate of $f(2)$ obtained from Lagrange interpolation of $f(x)=1 / x$ through the points 0.5 , $0.75,1,1.25,1.5$ and 3 . What happens to error bounds as you increase the number of interpolation points for this function?
3. (a) Simpson's rule for integrating a function over the interval $[-h, h]$ can be written in the form,

$$
\int_{-h}^{h} f(x) d x=w_{1} f(-h)+w_{2} f(0)+w_{3} f(h)
$$

where w_{1}, w_{2} and w_{3} are constants. Use the method of undetermined coefficients to find the constants w_{1}, w_{2} and w_{3}. Calculate the Simpson's rule approximation to the integral

$$
I=\int_{0}^{\pi / 2} \cos (x) d x
$$

and calculate the error from the actual answer.
(b) Show that Simpson's rule is exact for all cubic polynomials and hence using a suitable quartic polynomial obtain the error term in the form $K f^{I V}(c)$ (where $f^{I V}$ denotes the fourth derivative of $\left.f\right)$ for some value $c \in(-h, h)$ where K is a constant to be determined. Show that the error in the integral, I, is consistent with this error term.
4. (a) Consider the ordinary differential equation,

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y) . \tag{1}
\end{equation*}
$$

By integrating equation (1) over the interval $\left[t_{n}, t_{n+1}\right]$ and approximating $f(t, y)$ as a constant derive the forward Euler approximation,

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)
$$

where $h=t_{k+1}-t_{k}($ for all $k)$.
Verify that $y(t)=\cos (t)$ is the solution the initial value problem

$$
\begin{equation*}
\frac{d y}{d t}=\cos (t)-\sin (t)-y, \quad y(0)=1 \tag{2}
\end{equation*}
$$

Use the forward Euler method to calculate an approximation to $y(\pi / 3)$ using a step-size of $h=\pi / 6$ and calculate the absolute error from the exact solution $y(\pi / 3)=0.5$.
(b) By finding a suitable quadrature formula for integration of equation (1) over the interval $\left[t_{n}, t_{n+1}\right]$ derive the three-step Adams-Bashforth scheme,

$$
y_{n+1}=y_{n}+\frac{h}{12}\left(23 f\left(t_{n}, y_{n}\right)-16 f\left(t_{n-1}, y_{n-1}\right)+5 f\left(t_{n-2}, y_{n-2}\right)\right)
$$

5. (a) Find the $L U$-factorisation of the matrix,

$$
\left(\begin{array}{ccc}
-2 & 3 & 2 \\
2 & 1 & 1 \\
1 & 2 & 1
\end{array}\right)
$$

showing your method of working. Demonstrate how this factorisation may be used to solve the linear system,

$$
\left(\begin{array}{ccc}
-2 & 3 & 2 \\
2 & 1 & 1 \\
1 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-3 \\
4 \\
3
\end{array}\right)
$$

(b) Explain what is meant by (row) pivoting in the context of matrix factorisation. Show that the linear system,

$$
\left(\begin{array}{ccc}
0 & 2 & 1 \\
2 & -2 & 4 \\
1 & -1 & 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-1 \\
4 \\
2
\end{array}\right)
$$

cannot be solved by $L U$-factorisation without pivoting even though the matrix is non-singular. Show how pivoting overcomes this problem and hence find the solution.

END

