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1. (a) Define angular momentum (h) and the moment of force (G) around a point O. Prove
that dh/dt = G and use this to show that motion under the central force of magnitude µ/r2

directed towards point O, obeys conservation of angular momentum. Here µ is a positive
constant and r the distance of the particle from O. Thus show that the path of a particle
under this force lies entirely in a fixed plane through the point O.

(b) A particle of unit mass moves in this fixed plane under the action of the central force
described in part (a). Using plane polar coordinates (r, θ) with non-constant unit vectors
r̂ = r−1r = (cos θ, sin θ) and θ̂ = (− sin θ, cos θ), show that ṙ = ṙr̂ + rθ̇θ̂ and h = r2θ̇, the
latter being conserved according to part (a). Here the notation ṙ = dr/dt and θ̇ = dθ/dt is
used. Another conserved physical quantity is 1

2
(ṙ2 + r2θ̇2)− µ/r. Name this quantity.

(c) Since h > 0, θ is an increasing function of t and as such r may be expressed as a function
of θ instead of t. Using u = 1/r and the results in part (b), express the transverse velocity
component in terms of h and u. Also, using the chain rule, show that the radial velocity
component is equal to −hdu/dθ. Hence deduce that

h2

2

[(
du

dθ

)2

+ u2

]
− µu = E. (1)

(d) Name the quantities l = h2/µ ≤ 0 and e =
√

2Eh2/µ2 + 1 ≥ 0 and show that equation
(1) can be written as (dw/dθ)2 = 1 − w2, where w = (lu − 1)/e. Using the substitution
w = cosψ, show that this becomes lu = 1 + e cos(θ − θ0).

(e) According to Kepler’s first law, each planet describes an ellipse with the sun at one
focus. Use the last expression in part (d) to derive expressions for the maximum and
minimum distance from the sun. What are these positions called? Use them to calculate
the semi-major axis of the elliptic orbit.
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2. (a) Define the center of mass (CM) of a rigid body. Using this definition, show that the
CM of a uniform solid of revolution is at position

z̄ =

∫ z2

z1
zr2dz∫ z2

z1
r2dz

using polar coordinates (r, θ, z) and with the z axis as axis of symmetry. Let the revolving
body be given by 0 ≤ r ≤ r(z) with z1 ≤ z ≤ z2. Using this formulation, show that a solid
hemisphere of radius a has z̄ = 3a/8, i.e. its centre of mass lies on its axis of symmetry at a
distance 3a/8 from its circular plane face, henceforth to be called the base of the body.

(b) The solid hemisphere described in part (a), whose weight is W , rests in equilibrium
with its flat face in contact with an inclined plane that has a rough surface, giving the latter
a coefficient of static friction µ. The plane has an inclination α with the horizontal, while
the point of the body most remote from its base is subjected to a force of magnitude P ,
parallel to the line of slope of the plane in the upward direction. By resolving along and

α

ax

X
C

a

W

P

3a
8

__

N

F
α

normal to the incline, obtain expressions in terms of P , W and α for the downward frictional
force F and the normal reaction N exerted by the plane on the body, and show that

F

N
=

P

W
secα− tanα.

(c) The line of action of N meets the diameter of the base of the body at a point at a
distance x up the incline from the centre of the base. Take moments about the centre of the
base and use the expression previously obtained for N , to show that

x

a
cosα =

P

W
− 3

8
sinα.

(d) Given that tanα < µ, use the law of static friction to show that P ≤ W (sinα+µ cosα).
Also, obtain from part (c) the result P ≤ W (8 cosα+ 3 sinα)/8.

(e) P is now gradually increased, while α is held fixed. Show that equilibrium is eventually
broken by slipping when P = W (sinα + µ cosα) or by toppling when P = W (8 cosα +
3 sinα)/8, according as µ is less or greater than (8− 5 tanα)/8.
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3. (a) For a system of forces Fα acting at points rα, define the resultant F and the resultant
moment G about the origin. Show that for the resultant moment Gr about an arbitrary
point r, we can write Gr = G− r× F, and that this satisfies F•Gr = F•G independent of
r.

(b) Define briefly what is meant by a couple and its particular moment, as well as a wrench
of a particular intensity and pitch. Using part (a), derive the parametric expression for the
central axis of a wrench. Show that the pitch can be written as a function of invariants and
state without proof necessary and sufficient conditions on resultant F and resultant moment
G for the system in part (a) to be equivalent to (i) a wrench, (ii) a single force, (iii) a couple,
or (iv) no forces at all.
[Accept without proof the vector identity A× (B×C) = (A•C)B− (A•B)C.]

(c) Forces F1 = (2, 1,−1) and F2 = (−2β, 2 − 3β, β) act at the points r1 = (β, 1, 2β) and
r2 = (1, 2, 1) respectively. Show that the system has resultant F = (1 − β)(2, 3,−1) and
resultant moment G = [3(β − 1), 2β, 2β], and calculate F•G.

(d) Find the unique value of β (= βc) for which the system in part (c) is equivalent to a
couple, and write down the components of the moment of that couple.

(e) Find the unique value of β (= βf ) for which the system in part (c) is equivalent to a
single force. Write down the components of that force and obtain a parametric equation for
its line of action.

(f) Show that for all values of β other than βf and βc, the system in part (c) is equivalent
to a wrench. Calculate the intensity and pitch of this wrench as a function of β.

4. A car park barrier consists of a uniform thin pole of length 8a and mass m with a uniform
circular disc of radius a and mass 2m welded tangentially at one end. A light tie joins the
centre of the disc with the centre of the pole (for added strength). Assume that this tie is
weightless. The barrier is supported on the left by a rough bracket A a distance a from the
end of the pole, while the right end of the pole rests on a support B.

a A B
3aa 4a

(a) Use the principle of decomposition to show that the centre of mass of the barrier lies
on the tie, a distance a/3 to the right of the bracket A which supports the barrier and 2a/3
above the horizontal line AB. (Use A as the origin of the reference system.)

(b) Calculate the moment of inertia (MI) of the pole about A. Assuming (without proof)
that the MI of a uniform solid disc with mass M and radius R is MR2/2, use the parallel
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axes theorem to determine the MI of the uniform circular disc of the barrier about the point
A. Show that the total MI of the barrier is 58ma2/3

(c) The barrier is designed so that it pivots about A in a vertical plane, and has an equi-
librium position that is partly open. Draw a diagram showing all the forces acting on the
barrier when the pole makes an angle θ with the horizontal line AB. Show that the angle
tan θ = 1/2 when the barrier is in its equilibrium position.

(d) By working in polar coordinates (r, θ) and taking A to be the origin of the system, show
that the forces along and perpendicular to the pole satisfy the relations

F = m
[
3g sin θ −

√
5 aθ̇2

]
and N = m

[
3g cos θ +

√
5 aθ̈

]
by applying Newton’s second law, where F is the frictional force directed upward along the
pole and N the normal reaction of bracket A on the pole.
[It may be assumed without proof that the radial and transverse acceleration in polar coor-
dinates are given by (r̈ − rθ̇2) and (rθ̈ + 2ṙθ̇) respectively.]

(e) The barrier is disturbed from its equilibrium position and falls towards the horizontal.
Write down the expression for the total energy and show that at equilibrium this is equal
to 5mga sin θ. [Take A as the reference level for the potential energy.] Use the principle of
energy conservation to show that the angular velocity of the barrier is given by

θ̇2 =
6

29

g

a
(2 sin θ − cos θ) .

Show by differentiating with respect to t that

θ̈ =
3

29

g

a
(2 cos θ + sin θ) .

5. A hollow uniform tube A and a hollow uniform sphere B, each of mass M and radius a,
lie (not in contact with each other) on a fixed rough horizontal plane, with which each
has the same coefficient of dynamic friction µ′. At time t = 0 tube A has zero angular
velocity, but its centre is moving directly towards B with speed V . At the same time sphere
B is instantaneously at rest, but has an angular velocity Ω about the horizontal diameter
perpendicular to the line of centres in the sense required to make B roll away from A.

V
ΩBA

(a) Use the definition for the moment of inertia (MI) to show that the MI of the hollow
tube A about its centre of mass is Ma2. Assume (without proof) that the MI of the hollow
sphere B about its centre of mass is given by 2Ma2/3.
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(b) Show that

1. while tube A is slipping, it has uniform deceleration µ′g at the centre together with
uniform angular acceleration µ′g/a ;

2. while sphere B is slipping, it has uniform acceleration µ′g at the centre together with
uniform angular deceleration 3µ′g/(2a).

(c) Show that, if Ω = 5V/(4a), then the tube and the sphere start to roll simultaneously
at time t = V/(2µ′g).

(d) Show that when they start rolling, they both move at the same speed of V/2. One
specification of the system is that tube A and sphere B should never touch each other.
Show that during the time interval 0 ≤ t ≤ V/(2µ′g), tube A moves a distance 3V 2/(8µ′g)
towards B while sphere B moves distance V 2/(8µ′g) away from A. Hence write down the
minimum distance they should be apart at time t = 0 to satisfy the no-contact specification.
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