MATH236001

This question paper consists of 4

Only approved basic scientific calculators may be used
© UNIVERSITY OF LEEDS
Examination for the Module MATH2360
(January 2004)

VECTOR CALCULUS AND APPLICATIONS

Time allowed: 2 hours

Do not attempt more than FOUR questions.

All questions carry equal weight.

1. (i) Show that the vector field

$$
\boldsymbol{F}(x, y, z)=\left(-\frac{y}{x^{2}} \cos \left(\frac{y}{x}\right), \frac{1}{x} \cos \left(\frac{y}{x}\right), 2 z\right)
$$

obeys $\boldsymbol{\nabla} \times \boldsymbol{F}=0$, and find a corresponding potential field φ. What can you conclude about the line integral

$$
\int_{P}^{Q} \boldsymbol{F} \cdot d \boldsymbol{r} ?
$$

Evaluate the integral over any arbitrary curve from $P=(1, \pi, 1)$ to $Q=\left(\frac{1}{2}, \pi / 8,2\right)$.
(ii) Consider the surface given by

$$
\varphi(x, y, z)=z^{3}-\exp (x+y z)=0 .
$$

Find $\boldsymbol{\nabla} \varphi$ and calculate the unit normal vector to the surface at the point $(-1,1,1)$. Find the equation for the tangent plane and the shortest distance of this plane to the origin.
(iii) Sketch the region of integration for the integral

$$
I=\int_{0}^{1} \int_{y}^{1} x^{4} \cos \left(y x^{2}\right) d x d y
$$

Evaluate I by interchanging the order of integration.
2. (i) Let $\boldsymbol{F}(x, y, z)$ be the vector field $\boldsymbol{F}=\left(z^{1 / 2} x, e^{y}, \sin z \cos x\right)$ and $\varphi(x, y, z)$ be the scalar field $\varphi=\sin (y+z)$.

Calculate $(\boldsymbol{F} \cdot \boldsymbol{\nabla}) \varphi$ and $(\boldsymbol{F} \cdot \boldsymbol{\nabla}) \boldsymbol{F}$.
(ii) Show, using suffix notation techniques or otherwise, that for an arbitrary vector field \boldsymbol{v}

$$
\boldsymbol{v} \times(\boldsymbol{\nabla} \times \boldsymbol{v})=\boldsymbol{\nabla}\left(\frac{1}{2} v^{2}\right)-(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}
$$

where $v^{2}=\boldsymbol{v} \cdot \boldsymbol{v}$.
Hence, or otherwise, show that

$$
\begin{equation*}
\boldsymbol{\nabla} \times(\boldsymbol{v} \times(\boldsymbol{\nabla} \times \boldsymbol{v}))+\boldsymbol{\nabla} \times((\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v})=0 \tag{*}
\end{equation*}
$$

for an arbitrary vector field \boldsymbol{v}
Demonstrate the above result $(*)$ for the particular case where $\boldsymbol{v}=\left(z^{2}, x, 0\right)$.
3. (i) Calculate the integral

$$
\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{r},
$$

where $\boldsymbol{F}=\left(y, x^{3}, 0\right)$
in which the contour C is the circle $x^{2}+y^{2}=1$ in the plane $z=0$ transversed in an anti-clockwise direction.

Hint: You may assume that

$$
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \quad \cos ^{4} \theta=\frac{3}{8}+\frac{\cos 2 \theta}{2}+\frac{\cos 4 \theta}{8}
$$

(ii) Evaluate

$$
\iint_{S}(\boldsymbol{\nabla} \times \boldsymbol{F}) \cdot d \boldsymbol{S}
$$

where S is the surface given by $z^{2}=1-\left(x^{2}+y^{2}\right)(z \geq 0)$ and \boldsymbol{F} is the same as in (i).
(iii) State Stokes' Theorem and verify it in this case by comparing the results of (i) and (ii). Let I be defined by

$$
I=\iint_{S} \boldsymbol{G} \cdot d \boldsymbol{S}
$$

where S is the cone given by $z=1-\left(x^{2}+y^{2}\right)^{1 / 2}, z \geq 0$ and $\boldsymbol{G}=\left(0,0,3 x^{2}-1\right)$. State, using Stokes' Theorem, and without any further calculations, the value of I from the result of (i).

Hint: Compare \boldsymbol{G} with $\boldsymbol{\nabla} \times \boldsymbol{F}$.
4. (i) Calculate directly the surface integral

$$
I=\iint_{S} \boldsymbol{F} \cdot d \boldsymbol{S}
$$

where $\boldsymbol{F}=\left(x^{2}, y, z\right)$ and S is the surface given by $z=1-x^{4}-y^{4}-2 x^{2} y^{2}$ with $0 \leq z \leq 1$.

Hint: Consider the expression $\left(x^{2}+y^{2}\right)^{2}$ when considering the surface.
(ii) Calculate $\boldsymbol{\nabla} \cdot \boldsymbol{F}$, where \boldsymbol{F} is defined as in (i), and then calculate

$$
J=\iiint_{V}(\boldsymbol{\nabla} \cdot \boldsymbol{F}) d V
$$

where V is the volume enclosed by the surface given in (i) and the disk $x^{2}+y^{2}=1, z=0$.
(iii) State the Divergence theorem and compare the results of questions (i) and (ii) to show that it is verified in the above case.

Hint: Remember to include the contribution from the disk.

5. (i) Calculate

$$
\int_{C} f(x, y, z) d s
$$

where s is the arc length parameter, $f(x, y, z)=\frac{z y^{3}}{2}+\frac{x}{2} \sin \left(\frac{\pi z}{2}\right)$, and C is the curve given by $x=t^{3}, y=t, z=1$, with $0 \leq t \leq 1$.
(ii) By transforming to polar coordinates (r, θ) find

$$
\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \sin \left(x^{2}+y^{2}\right) d x d y
$$

and sketch the region of integration in the (x, y)-plane.
(iii) Elliptic cylinder coordinates (u, v, w) are related to Cartesian coordinates (x, y, z) via the relations:

$$
\left\{\begin{array}{l}
x=a \cosh u \cos v \\
y=a \sinh u \sin v \\
z=w
\end{array}\right.
$$

where $-\infty \leq u, v, w<\infty$.
Find the expressions for the scalars h_{1}, h_{2}, h_{3} and the unit vectors $\mathbf{e}_{u}, \mathbf{e}_{v}, \mathbf{e}_{w}$ obeying

$$
\frac{\partial \mathbf{x}}{\partial u}=h_{1} \mathbf{e}_{u}, \quad \frac{\partial \mathbf{x}}{\partial v}=h_{2} \mathbf{e}_{v}, \quad \frac{\partial \mathbf{x}}{\partial w}=h_{3} \mathbf{e}_{w},
$$

where $\mathbf{x}=\mathbf{x}(u, v, w)$ is the position vector in the Cartesian coordinate system.
Show that the vectors $\mathbf{e}_{u}, \mathbf{e}_{v}, \mathbf{e}_{w}$ are orthonormal (orthogonal and of unit length).

