MATH236001

This question paper consists of 3

Only approved basic scientific calculators may be used

© UNIVERSITY OF LEEDS

Examination for the Module MATH2360

(January 2002)

VECTOR CALCULUS AND APPLICATIONS

Time allowed: 2 hours

Do not attempt more than FOUR questions.
 All questions carry equal weight.

1. (i) Show that the vector field

$$
\boldsymbol{F}(x, y, z)=\left(y+e^{x+z^{2}}, x, 2 z e^{x+z^{2}}\right)
$$

obeys $\boldsymbol{\nabla} \times \boldsymbol{F}=0$, and find a corresponding potential field φ, such that $\boldsymbol{F}=\boldsymbol{\nabla} \varphi$. What can you conclude about the line integral

$$
\int_{P}^{Q} \boldsymbol{F} \cdot d \boldsymbol{r} ?
$$

Evaluate the integral over an arbitrary curve from $P=(1,1, \sqrt{2})$ to $Q=(1,2, \sqrt{3})$.
(ii) Consider the surface given by

$$
\varphi(x, y, z)=x^{2} \ln x+y^{3 / 2}+z-1=0 .
$$

Find $\boldsymbol{\nabla} \varphi$ and calculate the unit normal vector to the surface at the point $(1,4,3)$.
(iii) Sketch the region of integration for the integral

$$
I=\int_{0}^{1} \int_{x^{2}}^{1} x^{3}\left(1+y^{3}\right)^{1 / 5} d y d x
$$

Evaluate I by interchanging the order of integration.
2. (i) Let $\boldsymbol{F}(x, y, z)$ be the vector field $\boldsymbol{F}=\left(y \sin x, \cos ^{2} z, x^{3 / 2}\right)$ and $\varphi(x, y, z)$ be the scalar field $\varphi=(x-y)^{2}+z$.

Calculate $\boldsymbol{\nabla} \varphi, \boldsymbol{\nabla} \times \boldsymbol{F},(\boldsymbol{F} \cdot \boldsymbol{\nabla}) \varphi$ and $(\boldsymbol{F} \cdot \boldsymbol{\nabla}) \boldsymbol{F}$.
(ii) Show, using suffix notation techniques or otherwise, that for an arbitrary vector field \boldsymbol{G}

$$
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{G})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{G})-\nabla^{2} \boldsymbol{G}
$$

Verify this formula, taking \boldsymbol{G} to be the vector \boldsymbol{F} of part (i).
3. (i) Calculate the integral

$$
\oint_{C} \boldsymbol{v} \cdot d \boldsymbol{r}
$$

where $\boldsymbol{v}=\left(x^{2}-z^{2}, x^{3}-z y, x y^{2}\right)$, in which the contour C is the circle $x^{2}+y^{2}=1$ in the plane $z=0$ traversed in an anti-clockwise direction.

Hint: You may assume that

$$
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}, \quad \cos ^{4} \theta=\frac{3}{8}+\frac{\cos 2 \theta}{2}+\frac{\cos 4 \theta}{8} .
$$

(ii) Evaluate

$$
\iint_{S}(\boldsymbol{\nabla} \times \boldsymbol{v}) \cdot d \boldsymbol{S}
$$

where S is the conical surface given by $\left(x^{2}+y^{2}\right)^{1 / 2}+z=1(0 \leq z \leq 1)$ and \boldsymbol{v} is the same as in (i).
(iii) State Stokes' Theorem and verify it in this case by comparing the results of (i) and (ii).
4. (i) Calculate directly the surface integral

$$
I=\iint_{S} \boldsymbol{F} \cdot d \boldsymbol{S}
$$

where $\boldsymbol{F}=\left(x-y, y+x, x^{2}+y^{2}\right)$ and S is the paraboloid given by $x^{2}+y^{2}+z=4$, with $0 \leq x \leq 2,0 \leq y \leq 2,0 \leq z \leq 4$.
(ii) Calculate $\boldsymbol{\nabla} \cdot \boldsymbol{F}$, where \boldsymbol{F} is defined as in (i), and then calculate

$$
J=\iiint_{V}(\boldsymbol{\nabla} \cdot \boldsymbol{F}) d V
$$

where V is the volume enclosed by the paraboloid in section (i) and the disk given by $x^{2}+y^{2} \leq 4$, $z=0$.
(iii) State the Divergence theorem and compare the results of questions (i) and (ii) to show that it is verified in the above case.

Hint: Remember to add in the contribution from the disk in the $x y$-plane, which together with the paraboloid, forms the closed surface for the volume in part (ii).

5. (i) Calculate

$$
\oint_{C} f(x, y, z) d s
$$

where s is the arc length parameter, $f\left((x, y, z)=x y^{1 / 2}(1-2 x z)+2\left(1-2 x^{2}\right)^{1 / 4} x^{3}\right.$, and C is the closed curve given by $x=\frac{\sin t}{\sqrt{2}}, y=\cos t$ and $z=\frac{\sin t}{\sqrt{2}}$.
(ii) By means of the transformation $x=a r \cos \theta, y=b r \sin \theta$, evaluate

$$
\iint_{\mathcal{R}}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{5 / 4} d y d x
$$

where \mathcal{R} denotes the region bounded by the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$.
(iii) Oblate spheroidal coordinates (ξ, η, ϕ) are related to Cartesian coordinates (x, y, z) via the relations

$$
\begin{aligned}
x & =a \cosh \xi \cos \eta \cos \phi, \\
y & =a \cosh \xi \cos \eta \sin \phi, \\
z & =a \sinh \xi \sin \eta,
\end{aligned}
$$

where a is a constant and $\xi \geq 0,-\frac{\pi}{2} \leq \eta \leq \frac{\pi}{2}, 0 \leq \phi<2 \pi$.
Find the expressions for the scalars h_{1}, h_{2}, h_{3} and the unit vectors $\mathbf{e}_{\xi}, \mathbf{e}_{\eta}, \mathbf{e}_{\phi}$ obeying

$$
\frac{\partial \mathbf{x}}{\partial \xi}=h_{1} \mathbf{e}_{\xi}, \quad \frac{\partial \mathbf{x}}{\partial \eta}=h_{2} \mathbf{e}_{\eta}, \quad \frac{\partial \mathbf{x}}{\partial \phi}=h_{3} \mathbf{e}_{\phi},
$$

where $\mathbf{x}=\mathbf{x}(\xi, \eta, \phi)$ is the position vector in the Cartesian coordinate system.
Show that the vectors $\mathbf{e}_{\xi}, \mathbf{e}_{\eta}, \mathbf{e}_{\phi}$ are orthogonal.

