MATH-221001

This question paper consists of 3 printed pages, each of which is identified by the reference MATH–2210

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH–2210

(May 2006)

Introduction to Discrete Mathematics

Time allowed : 2 hours

Answer not more than **four** questions. All questions carry equal marks.

1. (a) In the National Lottery of Bolonia, participants select 8 numbers between 1 and 80 inclusive. 12 numbers in the same range are then drawn at random. You win a first prize if all your numbers are among the 12 drawn, and you win a consolation prize if all but one of your numbers are among the 12 drawn. What is the probability that you win a first prize? What is the probability that you win a second prize?

(b) For finite sets A_1 and A_2 , prove that

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

State the inclusion-exclusion principle for n finite sets A_1, A_2, \ldots, A_n in terms of numbers of the form $|A_{r_1} \cap A_{r_2} \cap \ldots \cap A_{r_k}|$ for $1 \le r_1 < r_2 < \ldots < r_k \le n$.

Find how many integers there are in the range 1 to 1000 which are perfect squares, or multiples of either 5 or 7.

2. (a) Find the general solution of the difference equation

$$x_{n+2} - 5x_{n+1} + 4x_n = 2^n.$$

(b) Find the solution of the difference equation

$$x_{n+1} - 3x_n = 3^n$$

such that $x_0 = 3$.

(c) Let y_n stand for the number of strings of length n in the digits 0, 1, 2, ..., 9 in which 3 occurs an odd number of times. Find a (first order) difference equation for y_n , and hence find a formula for y_n in terms of n. Check your formula for the cases n = 1 and 2.

3. (a) State and prove the Handshaking Lemma.

(b) In each of the following cases, where the degrees of the vertices of a (simple) graph with 5 vertices are specified, either draw a picture of a graph which matches the given information, or prove that no such graph exists.

G_1		G_2			G_3	
vertex	degree	vertex	degree		vertex	degree
a	3	a	4		a	4
b	4	b	3		b	3
c	3	c	1		c	3
d	4	d	1		d	3
e	3	e	1		e	3

(c) (i) Define what is meant by saying that a graph is a *tree*.

(ii) List all non-isomorphic trees with at most 5 vertices.

(iii) Prove that for all $v \ge 1$, a tree with v vertices has v - 1 edges.

4. (a) Let G be a weighted simple graph, where the weights (on edges) are positive real numbers. Explain what a *minimal connector* for G is, and prove that this exists (provided G is finite and connected).

(b) Find a minimal connector for the weighted graph shown using Kruskal's algorithm, and give the value of the minimum total weight.

edge	μ	edge	μ
ab	13	cg	10
ae	14	ch	11
af	32	de	25
ah	20	dg	28
bc	18	dh	39
be	8	ef	2
bf	5	fg	23
cd	37	gh	4

(c) State without proof Euler's formula for finite connected graphs drawn in the plane having v vertices, e edges, and f faces, and deduce that $e \leq 3v - 6$ provided that there are at least 3 vertices.

(d) Draw the complete graph K_5 on 5 vertices, and deduce from part (c) that it is not planar.

5. (a) Consider the following register machine program P:

 $\begin{array}{cccc} \hat{1} & (1, \, 2, \, 4) & & \hat{5} & (1, \, 4) \\ \hat{2} & (2, \, 3) & & \hat{6} & (1, \, 7) \\ \hat{3} & (1, \, 1, \, 6) & & \hat{7} & \text{Halt} \\ \hat{4} & (2, \, 5, \, 7) & & \end{array}$

(i) Draw the flow chart corresponding to P.

(ii) Give the full trace table of the computation for the single integer inputs 3 and 4 (where register 2 is as usual assumed initialized to 0)

(iii) Describe the function $f : \mathbb{N} \to \mathbb{N}$ computed by P.

(b) Modify the program P given in part (a) to compute the function $g(n) = \begin{cases} 5 & \text{if } n \text{ is even} \\ 3 & \text{if } n \text{ is odd.} \end{cases}$

6. (a) Define what is meant by saying that a function f of n variables is primitive recursive.

Prove that addition A(x,y) = x + y and multiplication M(x,y) = xy are both primitive recursive.

(b) By exhibiting suitable programs, show that each of the basic functions Z(x), S(x), and $U_i^n(x_1,\ldots,x_n)$ is register machine computable, and show that if f(x) and g(x) are register machine computable, then so is f(x) + g(x).

(c) Show that there is a non-computable function $f : \mathbb{N} \to \mathbb{N}$.

END