MATH-221001

This question paper consists of 3 printed pages, each of which is identified by the

Only approved basic scientific reference MATH-2210

© UNIVERSITY OF LEEDS

Examination for the Module MATH-2210
(May 2006)

Introduction to Discrete Mathematics

Time allowed : 2 hours
Answer not more than four questions. All questions carry equal marks.

1. (a) In the National Lottery of Bolonia, participants select 8 numbers between 1 and 80 inclusive. 12 numbers in the same range are then drawn at random. You win a first prize if all your numbers are among the 12 drawn, and you win a consolation prize if all but one of your numbers are among the 12 drawn. What is the probability that you win a first prize? What is the probability that you win a second prize?
(b) For finite sets A_{1} and A_{2}, prove that

$$
\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right| .
$$

State the inclusion-exclusion principle for n finite sets $A_{1}, A_{2}, \ldots, A_{n}$ in terms of numbers of the form $\left|A_{r_{1}} \cap A_{r_{2}} \cap \ldots \cap A_{r_{k}}\right|$ for $1 \leq r_{1}<r_{2}<\ldots<r_{k} \leq n$.

Find how many integers there are in the range 1 to 1000 which are perfect squares, or multiples of either 5 or 7 .
2. (a) Find the general solution of the difference equation

$$
x_{n+2}-5 x_{n+1}+4 x_{n}=2^{n} .
$$

(b) Find the solution of the difference equation

$$
x_{n+1}-3 x_{n}=3^{n}
$$

such that $x_{0}=3$.
(c) Let y_{n} stand for the number of strings of length n in the digits $0,1,2, \ldots, 9$ in which 3 occurs an odd number of times. Find a (first order) difference equation for y_{n}, and hence find a formula for y_{n} in terms of n. Check your formula for the cases $n=1$ and 2 .
3. (a) State and prove the Handshaking Lemma.
(b) In each of the following cases, where the degrees of the vertices of a (simple) graph with 5 vertices are specified, either draw a picture of a graph which matches the given information, or prove that no such graph exists.

G_{1}					
G_{2}	G_{3}				
vertex	degree				
a	3				
b	4				
c	3				
d	4				
e	3		\quad	vertex	degree
:---:	:---:				
a	4				
b	3				
c	1				
d	1				
e	1				

(c) (i) Define what is meant by saying that a graph is a tree.
(ii) List all non-isomorphic trees with at most 5 vertices.
(iii) Prove that for all $v \geq 1$, a tree with v vertices has $v-1$ edges.
4. (a) Let G be a weighted simple graph, where the weights (on edges) are positive real numbers. Explain what a minimal connector for G is, and prove that this exists (provided G is finite and connected).
(b) Find a minimal connector for the weighted graph shown using Kruskal's algorithm, and give the value of the minimum total weight.

edge	μ	edge	μ
$a b$	13	$c g$	10
$a e$	14	$c h$	11
$a f$	32	$d e$	25
$a h$	20	$d g$	28
$b c$	18	$d h$	39
$b e$	8	$e f$	2
$b f$	5	$f g$	23
$c d$	37	$g h$	4

(c) State without proof Euler's formula for finite connected graphs drawn in the plane having v vertices, e edges, and f faces, and deduce that $e \leq 3 v-6$ provided that there are at least 3 vertices.
(d) Draw the complete graph K_{5} on 5 vertices, and deduce from part (c) that it is not planar.
5. (a) Consider the following register machine program P :

$\hat{1}(1,2,4)$	$\hat{5}(1,4)$
$\hat{2}(2,3)$	$\hat{6}(1,7)$
$\hat{3}(1,1,6)$	$\hat{\mathbf{7}}$ Halt
$\hat{4}(2,5,7)$	

(i) Draw the flow chart corresponding to P.
(ii) Give the full trace table of the computation for the single integer inputs 3 and 4 (where register 2 is as usual assumed initialized to 0)
(iii) Describe the function $f: \mathbb{N} \rightarrow \mathbb{N}$ computed by P.
(b) Modify the program P given in part (a) to compute the function $g(n)= \begin{cases}5 & \text { if } n \text { is even } \\ 3 & \text { if } n \text { is odd. }\end{cases}$
6. (a) Define what is meant by saying that a function f of n variables is primitive recursive.

Prove that addition $A(x, y)=x+y$ and multiplication $M(x, y)=x y$ are both primitive recursive.
(b) By exhibiting suitable programs, show that each of the basic functions $Z(x), S(x)$, and $U_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)$ is register machine computable, and show that if $f(x)$ and $g(x)$ are register machine computable, then so is $f(x)+g(x)$.
(c) Show that there is a non-computable function $f: \mathbb{N} \rightarrow \mathbb{N}$.

END

