MATH-209001

Only approved basic scientific calculators may be used.

This question paper consists of 2 printed pages, each of which is identified by the reference MATH-209001.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-2090 (May–June 2007)

Real and Complex Analysis

Time allowed : 2 hours

Do not answer more than **four** questions All questions carry equal marks

1. (a) Show that the improper integral

$$\int_3^\infty \frac{1}{(x+2)^2} \,\mathrm{d}x$$

converges, and find its value.

(b) Give the " ε - δ " definition of continuity for a function $f : \mathbb{R} \to \mathbb{R}$ at a point $a \in \mathbb{R}$, and use it to show that the function f defined by f(x) = 5x + 1 is continuous at every point $a \in \mathbb{R}$.

(c) What is meant by saying that a function f is differentiable at the point $a \in \mathbb{R}$? Show from the definition that the function f defined by f(x) = 1/(x+2) (for $x \neq -2$) is differentiable at the point a = 4, and calculate its derivative there.

(d) State the Intermediate Value Theorem and the Mean Value Theorem.

Use one of the above results to show that the equation $x^4 = e^x$ has a solution in the interval [-1, 0] and another solution in the interval [1, 2].

2. (a) State the Cauchy-Riemann equations for a function f(z) = u(x, y) + iv(x, y), where z = x + iy.

For each of the following functions f determine the corresponding u and v, and find the values of z for which the Cauchy–Riemann equations are satisfied.

(i)
$$f(z) = \overline{z}^2 + i \operatorname{Re} z$$
; (ii) $f(z) = iz^2 - 3z$.

(b) Define the notion of a *harmonic* function. Suppose that u(x, y) and v(x, y) are smooth functions satisfying the Cauchy–Riemann equations. Prove that u(x, y) is harmonic.

Show that the function $u(x, y) = e^x \sin y + x - y$ is harmonic, and find a harmonic conjugate function.

3. (a) State what it means for a subset $U \subseteq \mathbb{C}$ to be *open*. State what it means for U to be *path-connected*.

(b) Sketch each of the following sets, and say (with brief reasons) which of them are open and which are path-connected.

(i)
$$\{z \in \mathbb{C} : |z| \neq 2\};$$
 (ii) $\{z \in \mathbb{C} : z - \overline{z} = 2i\}.$

(c) Let $p: [a,b] \to \mathbb{C}$ define a piecewise smooth path, and let f be a continuous function defined on the path p. Give the definition of the expression $\int_{p} f(z) dz$.

(d) Let $p: [0, 2\pi] \to \mathbb{C}$ be the path defined by $p(t) = 4e^{it}$. Evaluate the following integrals, stating which standard results you use:

(i)
$$\int_p \frac{1}{z^5} dz$$
; (ii) $\int_p \overline{z} dz$; (iii) $\int_p \frac{z^3}{z-1} dz$; (iv) $\int_p \cos(e^z) dz$.

- 4. (a) Find the Taylor series of the function e^z about the point z = 2, and state the radius of convergence of the power series.
 - (b) (i) Compute the Laurent series of the function

$$f(z) = \frac{1}{z(z-3)}$$

about the point z = 3, valid in the region $\{z \in \mathbb{C} : 0 < |z - 3| < 3\}$.

(ii) Compute the Laurent series of the same function, about the same point, valid in the region $\{z \in \mathbb{C} : 3 < |z-3|\}$.

(c) What does it mean to say that a function f has a pole of order N at z_0 ? Give the definition of the *residue* of f at such a pole.

For each of the following functions, determine whether it has a pole at z = 0, and, if it does, determine the order of the pole and the residue at 0:

(i)
$$\frac{\sin z}{z}$$
; (ii) $\frac{\cos z}{z}$; (iii) $\frac{1}{z^2(z+1)}$.

5. Use complex variable methods to evaluate:

(i)
$$\int_0^{2\pi} \frac{1}{3+2\cos t} dt$$
; (ii) $\int_{-\infty}^{\infty} \frac{\cos x}{x^2 - 2x + 2} dx$.

END