© UNIVERSITY OF LEEDS

Examination for the Module MATH-2090
(May-June 2007)

Real and Complex Analysis

Time allowed : 2 hours

Do not answer more than four questions
All questions carry equal marks

1. (a) Show that the improper integral

$$
\int_{3}^{\infty} \frac{1}{(x+2)^{2}} \mathrm{~d} x
$$

converges, and find its value.
(b) Give the " $\varepsilon-\delta$ " definition of continuity for a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at a point $a \in \mathbb{R}$, and use it to show that the function f defined by $f(x)=5 x+1$ is continuous at every point $a \in \mathbb{R}$.
(c) What is meant by saying that a function f is differentiable at the point $a \in \mathbb{R}$? Show from the definition that the function f defined by $f(x)=1 /(x+2)$ (for $x \neq-2$) is differentiable at the point $a=4$, and calculate its derivative there.
(d) State the Intermediate Value Theorem and the Mean Value Theorem.

Use one of the above results to show that the equation $x^{4}=e^{x}$ has a solution in the interval $[-1,0]$ and another solution in the interval $[1,2]$.
2. (a) State the Cauchy-Riemann equations for a function $f(z)=u(x, y)+\mathrm{i} v(x, y)$, where $z=x+\mathrm{i} y$.

For each of the following functions f determine the corresponding u and v, and find the values of z for which the Cauchy-Riemann equations are satisfied.

$$
\text { (i) } f(z)=\bar{z}^{2}+\mathrm{i} \operatorname{Re} z ; \quad \text { (ii) } f(z)=\mathrm{i} z^{2}-3 z
$$

(b) Define the notion of a harmonic function. Suppose that $u(x, y)$ and $v(x, y)$ are smooth functions satisfying the Cauchy-Riemann equations. Prove that $u(x, y)$ is harmonic.

Show that the function $u(x, y)=e^{x} \sin y+x-y$ is harmonic, and find a harmonic conjugate function.
3. (a) State what it means for a subset $U \subseteq \mathbb{C}$ to be open. State what it means for U to be path-connected.
(b) Sketch each of the following sets, and say (with brief reasons) which of them are open and which are path-connected.
(i) $\{z \in \mathbb{C}:|z| \neq 2\}$;
(ii) $\{z \in \mathbb{C}: z-\bar{z}=2 \mathrm{i}\}$.
(c) Let $p:[a, b] \rightarrow \mathbb{C}$ define a piecewise smooth path, and let f be a continuous function defined on the path p. Give the definition of the expression $\int_{p} f(z) \mathrm{d} z$.
(d) Let $p:[0,2 \pi] \rightarrow \mathbb{C}$ be the path defined by $p(t)=4 e^{\mathrm{i} t}$. Evaluate the following integrals, stating which standard results you use:
(i) $\int_{p} \frac{1}{z^{5}} \mathrm{~d} z$;
(ii) $\int_{p} \bar{z} \mathrm{~d} z$;
(iii) $\int_{p} \frac{z^{3}}{z-1} \mathrm{~d} z$;
(iv) $\int_{p} \cos \left(e^{z}\right) \mathrm{d} z$.
4. (a) Find the Taylor series of the function e^{z} about the point $z=2$, and state the radius of convergence of the power series.
(b) (i) Compute the Laurent series of the function

$$
f(z)=\frac{1}{z(z-3)}
$$

about the point $z=3$, valid in the region $\{z \in \mathbb{C}: 0<|z-3|<3\}$.
(ii) Compute the Laurent series of the same function, about the same point, valid in the region $\{z \in \mathbb{C}: 3<|z-3|\}$.
(c) What does it mean to say that a function f has a pole of order N at z_{0} ? Give the definition of the residue of f at such a pole.
For each of the following functions, determine whether it has a pole at $z=0$, and, if it does, determine the order of the pole and the residue at 0 :
(i) $\frac{\sin z}{z}$;
(ii) $\frac{\cos z}{z}$;
(iii) $\frac{1}{z^{2}(z+1)}$.
5. Use complex variable methods to evaluate:

$$
\text { (i) } \int_{0}^{2 \pi} \frac{1}{3+2 \cos t} \mathrm{~d} t ; \quad \text { (ii) } \int_{-\infty}^{\infty} \frac{\cos x}{x^{2}-2 x+2} \mathrm{~d} x
$$

