© UNIVERSITY OF LEEDS
Examination for the Module MATH-2090
(May-June 2006)

Real and Complex Analysis

Time allowed : 2 hours

Do not answer more than four questions
All questions carry equal marks

1. (a) Show that the improper integral

$$
\int_{2}^{\infty} \frac{1}{x(x+7)} d x
$$

converges, and find its value.
(b) Give the " $\varepsilon-\delta$ " definition of continuity for a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at a point $a \in \mathbb{R}$, and use it to show that the function f defined by $f(x)=1+2|x|$ is continuous at the point $x=0$.
(c) What is meant by saying that a function f is differentiable at the point $a \in \mathbb{R}$? Explain briefly why the function $f(x)=1+2|x|$ is not differentiable at $x=0$.
(d) State Rolle's Theorem.

By considering the function $x \mapsto(x+1) \sin x$, or otherwise, show that there is a solution to the equation

$$
(x+1) \cos x+\sin x=0
$$

in the interval $[0, \pi]$.
2. (a) For each of the following functions $f(z)$, find real-valued functions u and v such that $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$.

$$
\text { (i) } f(z)=i z^{3}+2 z ; \quad \text { (ii) } f(z)=|z|^{2}-\bar{z}
$$

(b) State the Cauchy-Riemann equations. For each of the two functions in Part (a), state precisely the values of z for which the Cauchy-Riemann equations are satisfied.
(c) Define the notion of a harmonic function. Suppose that $u(x, y)$ and $v(x, y)$ are smooth functions satisfying the Cauchy-Riemann equations. Prove that $v(x, y)$ is harmonic.

For each of the functions in Part (a), determine whether or not the functions $u(x, y)$ and $v(x, y)$ are harmonic.
3. (a) State what it means for a subset $U \subseteq \mathbb{C}$ to be open. State what it means for U to be path-connected.
(b) Sketch each of the following sets, and say (with brief reasons) which of them are open and which are path-connected.
(i) $\{z \in \mathbb{C}: z+\bar{z} \neq 1\}$;
(ii) $\{z \in \mathbb{C}: z \bar{z}=4\}$.
(c) Let $p:[a, b] \rightarrow \mathbb{C}$ define a piecewise smooth path, and let f be a continuous function defined on the path p. Give the definition of the expression $\int_{p} f(z) d z$.
(d) State Cauchy's integral formula.
(e) Let $p:[0,2 \pi] \rightarrow \mathbb{C}$ be the path defined by $p(t)=2+e^{i t}$. Sketch this path, and evaluate the following integrals:
(i) $\int_{p} \frac{e^{z}}{z} d z$;
(ii) $\int_{p}|z|^{2} d z$;
(iii) $\int_{p} \frac{z^{4}}{z-2} d z$.
4. (a) Find the Taylor series of the function $1 /(z+1)$ about the point $z=2$, and state the radius of convergence of the power series.
(b) (i) Compute the Laurent series of the function

$$
f(z)=\frac{1}{(z+1)(z-2)}
$$

about the point $z=2$, valid in the region $\{z \in \mathbb{C}: 0<|z-2|<3\}$.
(ii) Compute the Laurent series of the same function, about the same point, valid in the region $\{z \in \mathbb{C}: 3<|z-2|\}$.
(c) What does it mean to say that a function f has a pole of order N at z_{0} ? Give the definition of the residue of f at such a pole.

For the function f defined by

$$
f(z)=\frac{1}{z^{2}\left(z^{2}-1\right)},
$$

find the poles of f, and calculate the residue at each pole.
5. Use complex variable methods to evaluate:

$$
\text { (i) } \int_{0}^{2 \pi} \cos ^{6} t d t ; \quad \text { (ii) } \int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

END

