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1. (a) For each of the following improper integrals, find whether the integral converges and,
if it does, find its value:

(i)

∫
∞

0

e−3x dx; (ii)

∫
∞

0

cos x dx.

(b) Define what is meant by saying that a function f(x) is continuous at x = a. By using
appropriate rules for continuous functions, and assuming that the functions x 7→ ex, x 7→ x

and constant functions are continuous, show that the function

f(x) =
ex

x4 + 1

is continuous at all a ∈ R.

(c) State the Intermediate Value Theorem.

Show that there is some value of x in the range 0 < x < 2 with

ex

x4 + 1
=

1

2
.

2. (a) State the Cauchy–Riemann equations for a function f(z) = u(x, y) + iv(x, y), where
z = x + iy.

For each of the following functions f determine the corresponding u and v, and find the
values of z for which the Cauchy–Riemann equations are satisfied.

(i) f(z) = z|z|2; (ii) f(z) = z2 + iz.
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(b) Define the notion of a harmonic function. Prove that if f is an analytic function on an
open set U such that u and v have continuous second-order partial derivatives, then u is a
harmonic function.

Show that the function u(x, y) = x2 + 4xy − y2 is harmonic, and find a harmonic conjugate
function.

3. (a) State what it means for a subset U ⊆ C to be open. State what it means for U to be
path-connected.

(b) Sketch each of the following sets, and say (with brief reasons) which of them are open
and which are path-connected.

(i) {z ∈ C : |z| ≥ 2}; (ii) {z ∈ C : Re z + Im z 6= 0}.

(c) State and prove the Fundamental Theorem of Path Integrals.

(d) Let p : [0, 2π] → C be the path defined by p(t) = 2 + eit. Evaluate the following
integrals:

(i)

∫
p

z dz; (ii)

∫
p

cos z

z − 2
dz; (iii)

∫
p

ez

z + 2
dz.

4. (a) Find the Taylor series of the function ez about the point z = 3, and state the radius
of convergence of the power series.

(b) Let f(z) be the function defined by the formula

f(z) =
1

z(z − 2)
.

(i) Find the Laurent series of the function f(z) about the point z = 2, valid in the
region {z ∈ C : 0 < |z − 2| < 2};

(ii) Find the Laurent series of the same function, about the same point, valid in the
region {z ∈ C : 2 < |z − 2|}.

(c) For each of the following functions, state the order of the pole at the point z = 3, and
find the residue at that point:

(i)
1

(z − 3)(z − 6)
; (ii)

ez

z2 − 9
; (iii)

z2

(z − 3)3
.

5. Use complex variable methods to evaluate:

(i)

∫
2π

0

1

5 + 3 cos t
dt; (ii)

∫
∞

−∞

cos x

x2 + 1
dx.
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