© UNIVERSITY OF LEEDS

Examination for the Module MATH-2090
(May/June 2005)

Real and Complex Analysis

Time allowed : 2 hours

Do not answer more than four questions
All questions carry equal marks

1. (a) For each of the following improper integrals, find whether the integral converges and, if it does, find its value:

$$
\text { (i) } \int_{0}^{\infty} e^{-3 x} d x ; \quad \text { (ii) } \int_{0}^{\infty} \cos x d x \text {. }
$$

(b) Define what is meant by saying that a function $f(x)$ is continuous at $x=a$. By using appropriate rules for continuous functions, and assuming that the functions $x \mapsto e^{x}, x \mapsto x$ and constant functions are continuous, show that the function

$$
f(x)=\frac{e^{x}}{x^{4}+1}
$$

is continuous at all $a \in \mathbb{R}$.
(c) State the Intermediate Value Theorem.

Show that there is some value of x in the range $0<x<2$ with

$$
\frac{e^{x}}{x^{4}+1}=\frac{1}{2} .
$$

2. (a) State the Cauchy-Riemann equations for a function $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$.

For each of the following functions f determine the corresponding u and v, and find the values of z for which the Cauchy-Riemann equations are satisfied.

$$
\text { (i) } f(z)=z|z|^{2} ; \quad \text { (ii) } f(z)=z^{2}+i z \text {. }
$$

(b) Define the notion of a harmonic function. Prove that if f is an analytic function on an open set U such that u and v have continuous second-order partial derivatives, then u is a harmonic function.

Show that the function $u(x, y)=x^{2}+4 x y-y^{2}$ is harmonic, and find a harmonic conjugate function.
3. (a) State what it means for a subset $U \subseteq \mathbb{C}$ to be open. State what it means for U to be path-connected.
(b) Sketch each of the following sets, and say (with brief reasons) which of them are open and which are path-connected.

$$
\text { (i) }\{z \in \mathbb{C}:|z| \geq 2\} ; \quad \text { (ii) }\{z \in \mathbb{C}: \operatorname{Re} z+\operatorname{Im} z \neq 0\}
$$

(c) State and prove the Fundamental Theorem of Path Integrals.
(d) Let $p:[0,2 \pi] \rightarrow \mathbb{C}$ be the path defined by $p(t)=2+e^{i t}$. Evaluate the following integrals:
(i) $\int_{p} \bar{z} d z$;
(ii) $\int_{p} \frac{\cos z}{z-2} d z$;
(iii) $\int_{p} \frac{e^{z}}{z+2} d z$.
4. (a) Find the Taylor series of the function e^{z} about the point $z=3$, and state the radius of convergence of the power series.
(b) Let $f(z)$ be the function defined by the formula

$$
f(z)=\frac{1}{z(z-2)} .
$$

(i) Find the Laurent series of the function $f(z)$ about the point $z=2$, valid in the region $\{z \in \mathbb{C}: 0<|z-2|<2\}$;
(ii) Find the Laurent series of the same function, about the same point, valid in the region $\{z \in \mathbb{C}: 2<|z-2|\}$.
(c) For each of the following functions, state the order of the pole at the point $z=3$, and find the residue at that point:
(i) $\frac{1}{(z-3)(z-6)} ;$
(ii) $\frac{e^{z}}{z^{2}-9}$;
(iii) $\frac{z^{2}}{(z-3)^{3}}$.
5. Use complex variable methods to evaluate:

$$
\text { (i) } \int_{0}^{2 \pi} \frac{1}{5+3 \cos t} d t ; \quad \text { (ii) } \int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+1} d x
$$

