© UNIVERSITY OF LEEDS

Examination for the Module MATH-2090
(May/June 2003)

Real and Complex Analysis

Time allowed : 2 hours

Do not answer more than four questions
All questions carry equal marks

A1. (a) Show that the improper integral

$$
\int_{0}^{\infty} \frac{1}{(x+1)(x+3)} d x
$$

converges, and find its value.
(b) Define what is meant by saying that a function $f(x)$ is continuous at $x=a$, and prove directly from the definition that the function $g(x)=3+2 x$ is continuous at any point.
(c) By using appropriate rules for continuous functions, and assuming that the function $x \mapsto e^{x}$ is continuous, show that the function

$$
f(x)=\frac{e^{3+2 x}}{3+2 x}
$$

is continuous on the closed interval $[0,1]$. State carefully the rules that you have used.
(d) State the Mean Value Theorem.

A2. (a) State the Cauchy-Riemann equations for a function $f(z)$, and show that they hold at any point where $f(z)$ is (complex) differentiable.
(b) Determine the points of the complex plane at which the function

$$
z \mapsto(\Re e(z))^{2}+\Im m(z) i
$$

is (complex) differentiable.
(c) Define the notion of a harmonic function. For each of the following functions, find whether the function is harmonic, and if so find a conjugate function.

$$
\begin{array}{ll}
\text { (a) } u(x, y)=x^{2}+x y-y^{2} ; & \text { (b) } w(x, y)=x^{3}+y^{2} \text {. }
\end{array}
$$

A3. (a) State what it means for a subset $U \subseteq \mathbb{C}$ to be open. State what it means for U to be (path)-connected.
(b) Sketch each of the following sets, and say (with brief reasons) which of them are open and which are (path)-connected.
(a) $\{z \in \mathbb{C}:|z|<1$ or $|z|>2\}$;
(b) $\{z \in \mathbb{C}: \Re e(z) \geq \Im m(z)\}$.
(c) State Cauchy's Theorem.
(d) Let $p:[0,2 \pi] \rightarrow \mathbb{C}$ be the path defined by $p(t)=2 e^{i t}$. Evaluate the following integrals:
(a) $\int_{p} \bar{z}^{2} d z$;
(b) $\int_{p} \frac{\cos z}{z} d z$;
(c) $\int_{p} \frac{\cos (z+3)}{z+3} d z$.

A4. (a) Find the Taylor series of the function $\sin z$ about the point $z=2$, and state its radius of convergence.
(b) Let $f(z)$ be the function defined by the formula

$$
f(z)=\frac{1}{(z-1)(z-2)^{2}}
$$

(i) Find the Laurent series of $f(z)$ about the point $z=1$ which is valid in the region $\{z \in \mathbb{C}:|z-1|>1\}$.
(ii) Find the Laurent series of $f(z)$ about the point $z=2$ which is valid in the region $\{z \in \mathbb{C}: 0<|z-2|<1\}$.
(c) For each of the following functions, state the order of the pole at the point $z=2$, and find the residue at that point:
(a) $\frac{1}{(z-1)(z-2)^{2}}$;
(b) $\frac{e^{z}}{z(z-2)}$;
(c) $\frac{\sin z}{(z-2)^{3}}$.

A5. Use complex variable methods to evaluate:

$$
\text { (i) } \int_{0}^{2 \pi} \frac{1}{3+\sin t} d t ; \quad \text { (ii) } \int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+9\right)^{2}} d x
$$

