MATH-208001

This question paper consists of 3 printed pages, each of which is identified by the reference MATH-208001.

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-2080 (January 2008)

Further Linear Algebra

Time allowed : 2 hours

Do not attempt more than **four** questions All questions carry equal marks

1. (a) Let V be a vector space over a field F. What is meant by saying that W is a vector subspace of V?

Which of the following are vector subspaces of \mathbb{R}^3 ? Give proofs or counterexamples, as appropriate.

(i)
$$W_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + 5x_2 + 6x_3 = 0\};$$

(ii) $W_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1x_2x_3 = 0\}.$

(b) Let U and W be vector subspaces of V. Show that $U \cap W$ is a vector subspace of V.

Define the subspace U + W. What does it mean to say that V is the *direct sum*, $U \oplus W$, of U and W?

(c) Consider the following subspaces of \mathbb{R}^3 :

$$U = \{ (a+3b, a, b) : a, b \in \mathbb{R} \}, \quad V = \{ (c, 0, 0) : c \in \mathbb{R} \}, \quad W = \{ (4d, d, d) : d \in \mathbb{R} \}.$$

Giving brief reasons, determine whether or not

- (i) $\mathbb{R}^3 = U \oplus V$, (ii) $\mathbb{R}^3 = U \oplus W$, (iii) $\mathbb{R}^3 = V \oplus W$.
- 2. (a) Let V be a vector space over a field F, and let $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$. Define what is meant by saying that the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$
 - (i) is linearly independent; (ii) spans V; (iii) is a basis of V.

What is meant by the *dimension* of a vector space?

Find a basis for the subspace of \mathbb{R}^4 consisting of all the solutions (x, y, z, w) to the pair of equations x + y - 2w = 0, y + z + 3w = 0.

(b) Which of the following sets are bases for \mathbb{C}^2 ? Give brief explanations.

(i) $\{(1,i),(i,1)\};$ (ii) $\{(1,i),(i,-1)\};$ (iii) $\{(1,0),(0,1),(1,i)\}.$

(c) Show that the set $\{(1, 0, 1, 1), (1, 1, 0, 1), (0, 1, 1, 0)\}$ is not linearly independent in \mathbb{F}_2^4 , where \mathbb{F}_2 denotes the field of two elements.

Find a basis for the subspace W spanned by this set of vectors. List all the elements of W.

3. (a) Let U and V be finite-dimensional vector spaces over a field F. Give the definition of a *linear mapping* $T: U \to V$.

Which of the following formulae define linear mappings from \mathbb{R}^3 to \mathbb{R}^2 ? Give a proof or counterexample in each case, as appropriate.

(i)
$$T_1(x, y, z) = (x^2, y + z);$$
 (ii) $T_2(x, y, z) = (0, x);$ (iii) $T_3(x, y, z) = (x + 1, y + 1).$

(b) Define the *image (range)* and the *null-space (kernel)* of a linear mapping $T: U \to V$.

Show that the null-space of T is a vector subspace of U.

State the definitions of the rank, r(T), and nullity, n(T), of T, and give a formula for r(T) + n(T).

Let the linear mapping $T : \mathbb{R}^2 \to \mathbb{R}^3$ be given by T(x, y) = (x - y, 2y - 2x, 0).

Write down bases for its image and null-space, and determine its rank and nullity.

Find the matrix A that represents T with respect to the standard bases of \mathbb{R}^2 and \mathbb{R}^3 .

4. (a) Let A and B be matrices with entries in the same field F. What is meant by saying that A is *equivalent* to B?

Prove that if A is equivalent to B, then B is equivalent to A.

(b) Let
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 6 & 3 \end{pmatrix}$$
.

Find r and invertible real matrices Q and P such that $Q^{-1}AP = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$, where each O denotes a matrix of zeroes (not necessarily the same size in each case).

Paying special attention to the order of the vectors, write down bases of \mathbb{R}^3 with respect to which $Q^{-1}AP$ represents the mapping $\mathbf{x} \mapsto A\mathbf{x}$.

(c) What does it mean to say that two vector spaces U and V over the same field are *isomorphic*?

For $k \ge 1$, let P_k denote the vector space of all real polynomials of degree at most k. For which value of n is P_k isomorphic to \mathbb{R}^n ? Give a brief reason for your answer.

5. (a) Let V be a vector space over a field F and let $T: V \to V$ be a linear mapping. Give the definitions of an *eigenvalue* and the corresponding *eigenvector* of T.

Let λ be an eigenvalue of T, and let p be a polynomial with coefficients in F. Define the linear mapping S = p(T) and show that $p(\lambda)$ is an eigenvalue of S.

(b) Let
$$A = \begin{pmatrix} 7 & -4 & 1 \\ 3 & 0 & 1 \\ -6 & 2 & -1 \end{pmatrix}$$
.

Given that the characteristic equation of A is $(\lambda - 1)^2(\lambda - 4)$, find its eigenvalues and eigenvectors.

Is A diagonalisable?

What is the *minimum polynomial* of a matrix? Find the minimum polynomial of A.

END