© UNIVERSITY OF LEEDS
Examination for the Module MATH-2080
(January 2008)
Further Linear Algebra

Time allowed : 2 hours

Do not attempt more than four questions
All questions carry equal marks

1. (a) Let V be a vector space over a field F. What is meant by saying that W is a vector subspace of V ?

Which of the following are vector subspaces of \mathbb{R}^{3} ? Give proofs or counterexamples, as appropriate.
(i) $W_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}+5 x_{2}+6 x_{3}=0\right\}$;
(ii) $W_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1} x_{2} x_{3}=0\right\}$.
(b) Let U and W be vector subspaces of V. Show that $U \cap W$ is a vector subspace of V.

Define the subspace $U+W$. What does it mean to say that V is the direct sum, $U \oplus W$, of U and W ?
(c) Consider the following subspaces of \mathbb{R}^{3} :

$$
U=\{(a+3 b, a, b): a, b \in \mathbb{R}\}, \quad V=\{(c, 0,0): c \in \mathbb{R}\}, \quad W=\{(4 d, d, d): d \in \mathbb{R}\}
$$

Giving brief reasons, determine whether or not
(i) $\mathbb{R}^{3}=U \oplus V$,
(ii) $\mathbb{R}^{3}=U \oplus W$,
(iii) $\mathbb{R}^{3}=V \oplus W$.
2. (a) Let V be a vector space over a field F, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$. Define what is meant by saying that the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$
(i) is linearly independent;
(ii) spans V;
(iii) is a basis of V.

What is meant by the dimension of a vector space?
Find a basis for the subspace of \mathbb{R}^{4} consisting of all the solutions (x, y, z, w) to the pair of equations $x+y-2 w=0, y+z+3 w=0$.
(b) Which of the following sets are bases for \mathbb{C}^{2} ? Give brief explanations.
(i) $\{(1, i),(i, 1)\}$;
(ii) $\{(1, i),(i,-1)\}$;
(iii) $\{(1,0),(0,1),(1, i)\}$.
(c) Show that the set $\{(1,0,1,1),(1,1,0,1),(0,1,1,0)\}$ is not linearly independent in \mathbb{F}_{2}^{4}, where \mathbb{F}_{2} denotes the field of two elements.

Find a basis for the subspace W spanned by this set of vectors. List all the elements of W.
3. (a) Let U and V be finite-dimensional vector spaces over a field F. Give the definition of a linear mapping $T: U \rightarrow V$.

Which of the following formulae define linear mappings from \mathbb{R}^{3} to \mathbb{R}^{2} ? Give a proof or counterexample in each case, as appropriate.
(i) $T_{1}(x, y, z)=\left(x^{2}, y+z\right)$;
(ii) $T_{2}(x, y, z)=(0, x)$;
(iii) $T_{3}(x, y, z)=(x+1, y+1)$.
(b) Define the image (range) and the null-space (kernel) of a linear mapping $T: U \rightarrow V$.

Show that the null-space of T is a vector subspace of U.
State the definitions of the rank, $r(T)$, and nullity, $n(T)$, of T, and give a formula for $r(T)+n(T)$.

Let the linear mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $T(x, y)=(x-y, 2 y-2 x, 0)$.
Write down bases for its image and null-space, and determine its rank and nullity.
Find the matrix A that represents T with respect to the standard bases of \mathbb{R}^{2} and \mathbb{R}^{3}.
4. (a) Let A and B be matrices with entries in the same field F. What is meant by saying that A is equivalent to B ?

Prove that if A is equivalent to B, then B is equivalent to A.
(b) Let $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 6 & 3\end{array}\right)$.

Find r and invertible real matrices Q and P such that $Q^{-1} A P=\left(\begin{array}{ll}I_{r} & O \\ O & O\end{array}\right)$, where each O denotes a matrix of zeroes (not necessarily the same size in each case).

Paying special attention to the order of the vectors, write down bases of \mathbb{R}^{3} with respect to which $Q^{-1} A P$ represents the mapping $\mathbf{x} \mapsto A \mathbf{x}$.
(c) What does it mean to say that two vector spaces U and V over the same field are isomorphic?

For $k \geq 1$, let P_{k} denote the vector space of all real polynomials of degree at most k. For which value of n is P_{k} isomorphic to \mathbb{R}^{n} ? Give a brief reason for your answer.
5. (a) Let V be a vector space over a field F and let $T: V \rightarrow V$ be a linear mapping. Give the definitions of an eigenvalue and the corresponding eigenvector of T.

Let λ be an eigenvalue of T, and let p be a polynomial with coefficients in F. Define the linear mapping $S=p(T)$ and show that $p(\lambda)$ is an eigenvalue of S.
(b) Let $A=\left(\begin{array}{ccc}7 & -4 & 1 \\ 3 & 0 & 1 \\ -6 & 2 & -1\end{array}\right)$.

Given that the characteristic equation of A is $(\lambda-1)^{2}(\lambda-4)$, find its eigenvalues and eigenvectors.

Is A diagonalisable?
What is the minimum polynomial of a matrix? Find the minimum polynomial of A.

END

