Only approved basic scientific calculators may be used.
(c) UNIVERSITY OF LEEDS

Examination for the Module MATH-2080
(January, 2007)

FURTHER LINEAR ALGEBRA

Time allowed : 2 hours
Answer four questions. All questions carry equal marks.

1. (a) Let V be a vector space over a field F. Give the definition of a vector subspace U of V. Show that $W:=\left\{\left(a+b, a, b^{2}\right): a, b \in \mathbb{R}\right\}$ is not a vector subspace of \mathbb{R}^{3}.
(b) Define what is meant by saying that a vector space V over a field F is the direct sum of two subspaces U, W.

Let

$$
U:=\{(a, 2 a, 3 a): a \in \mathbb{R}\} \quad \text { and } \quad W:=\{(x, y, z): x+y+z=0, \quad x, y, z \in \mathbb{R}\} .
$$

Show that $\mathbb{R}^{3}=U \oplus W$.
(c) Let U be a vector subspace of a vector space V over a field F, and suppose that $\boldsymbol{w} \in V$. Show that $U_{1}:=\{a \boldsymbol{w}+\boldsymbol{u}: a \in F, \boldsymbol{u} \in U\}$ is also a vector subspace of V.
2. (a) Let U and V be finite-dimensional vector spaces over a field F. Give the definition of a linear mapping $T: U \rightarrow V$.

Show that $T: \mathbb{C}^{2} \rightarrow \mathbb{C}$ given by $T\left(z_{1}, z_{2}\right):=z_{1}+i$ is not a linear mapping.
Show that if $T: U \rightarrow V$ and $S: V \rightarrow W$ are linear mappings, then the composition $S T: U \rightarrow W$ is also a linear mapping.
(b) Define what is meant by the null-space and the range of a linear mapping $T: U \rightarrow V$.

In the case that U is finite-dimensional, state the definitions of rank and nullity of T. What is then the value of $\operatorname{rank} T+$ nullity T ?
(c) Let the linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given by $T(x, y, z)=(x+y, y+z)$. Write down the matrix A representing T with respect to the standard basis. Find the matrix B which represents T with respect to the (ordered) bases $\{(1,0,0),(0,1,0),(1,1,-1)\}$ of \mathbb{R}^{3} and $\{(1,0),(0,1)\}$ of \mathbb{R}^{2}.
3. (a) Let A and B be matrices with entries in a field F. What is meant by saying that A is equivalent to B ?

Prove that if A is equivalent to B and if B is equivalent to C, then A is equivalent to C.
(b) Let

$$
A:=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0
\end{array}\right),
$$

where the entries of A are in the 2 element field \mathbb{F}_{2}.
Find r and invertible matrices Q and P (with entries in \mathbb{F}_{2}) such that

$$
Q A P=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

Find Q^{-1} and write down bases of \mathbb{F}_{2}^{4} and \mathbb{F}_{2}^{5} with respect to which $Q A P$ represents the mapping $\boldsymbol{x} \mapsto A \boldsymbol{x}$.
4. (a) Let A and B be $n \times n$ matrices with entries in a field F. What is meant by saying that A is similar to B ?

Show that if A is similar to B, then A^{2} is similar to B^{2}.
(b) Define an eigenvalue of an $n \times n$ matrix A of real numbers. Give also the definitions of the corresponding eigenvectors and generalised eigenvectors.

The matrix

$$
A:=\left(\begin{array}{rrr}
2 & 1 & 1 \\
-1 & 3 & 0 \\
1 & -1 & 2
\end{array}\right)
$$

has characteristic equation $(\lambda-3)(\lambda-2)^{2}=0$
Find the eigenvectors and generalised eigenvectors of A.
Hence, or otherwise, write down a Jordan canonical matrix B which is similar to A and find a non-singular matrix P such that $B=P^{-1} A P$.
5. (a) Write down the minimum polynomial of the matrix

$$
A:=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

(b) Let $(V,\langle\rangle$,$) be a real inner-product space.$

Define the norm $\|\boldsymbol{v}\|$ of a vector in V.
State the Cauchy Schwarz inequality for vectors $\boldsymbol{u}, \boldsymbol{v} \in V$.
Show that, for any vectors $\boldsymbol{u}, \boldsymbol{v} \in V$ we have

$$
\|\boldsymbol{u}+\boldsymbol{v}\| \leq\|\boldsymbol{u}\|+\|\boldsymbol{v}\| .
$$

(c) Define what it means for a vector \boldsymbol{u} to be orthogonal to a vector \boldsymbol{v} in an inner-product space.

Show that if \boldsymbol{u} is orthogonal to \boldsymbol{v}, then

$$
\|\boldsymbol{u}+\boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2} .
$$

(d) Let \mathbb{R}^{4} have the standard inner-product. Given that $\{(1,-1,1,-1),(1,-1,0,0),(0,1,-1,0)\}$ is a basis of $E=\{(x, y, z, t): x+y+z+t=0\}$, find an orthonormal basis of E.

END

