## © UNIVERSITY OF LEEDS

Examination for the Module MATH-2080
(January, 2006)

## FURTHER LINEAR ALGEBRA

Time allowed : 2 hours
Answer four questions. All questions carry equal marks.

1. (a) Let $V$ be a vector space over a field $F$. Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n} \in V$. Define what is meant by saying that the set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$
(i) is linearly independent;
(ii) spans $V$;
(iii) is a basis of $V$.

Let $V=\left\{\boldsymbol{x} \in \mathbb{R}^{4}: x_{1}+x_{2}-x_{3}-x_{4}=0\right\}$. Show that $\{(1,-1,0,0),(1,0,1,0),(1,0,0,1)\}$ is a basis of $V$.
(b) Let $W_{1}, W_{2}$ be vector subspaces of a vector space $U$ over a field $F$. Define what is meant by saying that $U$ is the direct sum, $W_{1} \oplus W_{2}$, of $W_{1}$ and $W_{2}$.

Prove that, if $U=W_{1} \oplus W_{2}$, then each $\boldsymbol{u} \in U$ has a unique decomposition of the form $\boldsymbol{u}=\boldsymbol{w}_{1}+\boldsymbol{w}_{2}$.

Let $V$ be the subspace of $\mathbb{R}^{4}$ defined in (a). Find a vector subspace $W$ of $\mathbb{R}^{4}$ such that $\mathbb{R}^{4}=V \oplus W$.
2. (a) Let $U$ and $V$ be finite-dimensional vector spaces over a field $F$ and let $T: U \rightarrow V$ be a linear mapping. Define what is meant by the null-space, the range, the nullity, and the rank of $T$.

Prove that the null space, $\operatorname{ker} T$, is a vector subspace of $U$.
What is the value of $\operatorname{rank} T+\operatorname{nullity} T$ ?
(b) Which of the following are linear mappings? Justify your answers. For each one that is a linear mapping, find a basis for its null space and hence find its nullity and rank.
(i) $S: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad S\left(x_{1}, x_{2}\right)=x_{1} x_{2}$;
(ii) $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}, \quad T\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}+i z_{2}, z_{3}\right)$.
3. (a) Let $A$ and $B$ be matrices with entries in a field $F$. What is meant by saying that $A$ is equivalent to $B$ ?

Prove that if $A$ is equivalent to $B$, then $B$ is equivalent to $A$.
(b) Let

$$
A=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

where the entries of $A$ are in the 2 element field $\mathbb{F}_{2}$.
Find $r$ and invertible matrices $Q$ and $P$ (with entries in $\mathbb{F}_{2}$ ) such that

$$
Q A P=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

Find $Q^{-1}$ and write down bases of $\mathbb{F}_{2}^{4}$ and $\mathbb{F}_{2}^{5}$ with respect to which $Q A P$ represents the mapping $\boldsymbol{x} \mapsto A \boldsymbol{x}$.
4. (a) Let $V$ be a vector space over a field $F$ and let $T: V \rightarrow V$ be a linear mapping. State the definitions of an eigenvalue and corresponding eigenvector of $T$.

Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ be eigenvectors corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of a linear mapping $T: V \rightarrow V$. Show that the set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ is linearly independent.
(b) Show that 2 is the only eigenvalue of the matrix

$$
A=\left(\begin{array}{rrr}
3 & 0 & -1 \\
3 & 1 & -2 \\
-1 & 1 & 2
\end{array}\right)
$$

Find the eigenvectors and generalised eigenvectors of $A$
Hence, or otherwise, write down the Jordan canonical matrix $B$ which is similar to $A$.
5. (a) Find the minimum polynomial of the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(b) Let $V$ be a vector space over $\mathbb{R}$. Define what is meant by an inner product on $V$.

Show that the following formula does not define an inner-product on $\mathbb{R}^{2}$ :

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+1
$$

(where $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$ and $\boldsymbol{y}=\left(y_{1}, y_{2}\right)$ ).
Define what is meant by saying that a set $\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{n}\right\}$ is an orthonormal basis of $V$.
Let $\mathbb{R}^{3}$ have the standard inner product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$. Find an orthonormal basis of the subspace $V$ given by $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}-x_{2}+x_{3}=0\right\}$.

END

