(c) UNIVERSITY OF LEEDS

Examination for the Module MATH-2080
(January, 2005)
FURTHER LINEAR ALGEBRA
Time allowed : 2 hours
Answer four questions. All questions carry equal marks.

1. Let V be a vector space over a field F. Define what is meant by saying that a set W is a vector subspace of V.
Let U, W be vector subspaces of V. Show that

$$
U+W:=\{\boldsymbol{u}+\boldsymbol{w}: \boldsymbol{u} \in U \text { and } \boldsymbol{w} \in W\}
$$

is a vector subspace of V.
Define what is meant by saying V is the direct sum of U and W.
Let W_{1}, W_{2}, W_{3}, and W_{4} be the following subspaces of \mathbb{R}^{4} :

$$
\begin{aligned}
& W_{1}=\{(a, b, 2 a, b-a): a, b \in \mathbb{R}\}, \\
& W_{2}=\{(c, d, 3 c, 2 d-c): c, d \in \mathbb{R}\}, \\
& W_{3}=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x=z \text { and } y=w\right\}, \\
& W_{4}=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x=y \text { and } z=w\right\} .
\end{aligned}
$$

Determine whether or not (i) $\mathbb{R}^{4}=W_{1} \oplus W_{2}$, (ii) $\mathbb{R}^{4}=W_{3} \oplus W_{4}$.
2. (a) Let V and W be finite-dimensional vector spaces over a field F and let $T: V \rightarrow W$ be a linear mapping. Define what is meant by the null-space, the range, the nullity, and the rank of T.

Let $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{r}, \boldsymbol{e}_{r+1}, \ldots, \boldsymbol{e}_{n}\right\}$ be a basis of V such that $\left\{\boldsymbol{e}_{r+1}, \ldots, \boldsymbol{e}_{n}\right\}$ is a basis of $\operatorname{ker} T$. Show that $\left\{T\left(\boldsymbol{e}_{1}\right), \ldots, T\left(\boldsymbol{e}_{r}\right)\right\}$ is a basis of range T and deduce that

$$
\operatorname{rank} T+\operatorname{nullity} T=\operatorname{dim} V
$$

(b) Which of the following are linear mappings? Justify your answers. For each one that is a linear mapping, find a basis for its null space and hence find its nullity and rank.
(i) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad T\left(x_{1}, x_{2}\right)=x_{1}-x_{2}$;
(ii) $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}, \quad T\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}+i z_{2}, 2+z_{3}\right)$.
3. (a) Let V and W be distinct vector spaces over a field F and let $T: V \rightarrow W$ be a linear mapping. Suppose that $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ is a basis of V and $\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{k}\right\}$ is a basis of W. Explain what is meant by the matrix A of T with respect to the given bases.

Using a result stated in question 2 , or otherwise, show that there are bases of the spaces V and W such that the matrix A representing T takes the form

$$
A=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

for an appropriate value of r.
(b) Let

$$
A=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

where the entries of A are in the 2 element field \mathbb{F}_{2}.
Find r and invertible matrices Q and P (with entries in \mathbb{F}_{2}) such that

$$
Q A P=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

[You need not show that P and Q are invertible.]
4. (a) Explain what is meant by saying that $n \times n$ matrices A and B are similar.

Prove that, if A and B are similar matrices with real entries, then they have the same characteristic polynomials.
(b) Find the eigenvectors and generalised eigenvectors of the mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined by $T(\boldsymbol{x})=A \boldsymbol{x}$, where

$$
A=\left(\begin{array}{rrr}
3 & -2 & -1 \\
0 & 1 & 1 \\
4 & -4 & -3
\end{array}\right)
$$

given that the characteristic equation of A is $(\lambda-1)^{2}(\lambda+1)=0$.
Hence, write down a matrix B in Jordan normal form which is similar to A, and find a matrix P such that $B=P^{-1} A P$.
5. (a) Let V be a vector space over \mathbb{R}. Define what is meant by an inner product on V.
(b) Let V be an inner-product space over \mathbb{R}. Define what is meant by saying that a set $\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{n}\right\}$ is an orthonormal basis of V.

Show that, for such a basis,

$$
\boldsymbol{v}=\sum_{i=1}^{n}\left\langle\boldsymbol{v}, \boldsymbol{f}_{i}\right\rangle \boldsymbol{f}_{i}, \quad \text { for all } \boldsymbol{v} \in V
$$

(c) Let the mapping $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be defined by $T(\boldsymbol{x})=A \boldsymbol{x}$, where

$$
A=\left(\begin{array}{llll}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2 \\
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0
\end{array}\right)
$$

Find an orthonormal basis of \mathbb{R}^{4} (with the standard inner-product) such that T is represented by a diagonal matrix with respect to that basis.

Write down the diagonal matrix.

END

