MATH-208001

This question paper consists of 2 printed pages, each of which is identified by the reference MATH–208001

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH–2080 (January, 2003)

FURTHER LINEAR ALGEBRA

Time allowed : 2 hours

Answer **four** questions. All questions carry equal marks.

- 1. (a) Let W_1 , W_2 be subspaces of the vector space V. Prove that the following conditions are equivalent:
 - (i) $V = W_1 + W_2$ and $W_1 \cap W_2 = \{\mathbf{0}\};$
 - (ii) every vector \mathbf{v} in V can be expressed uniquely as a sum $\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$, with $\mathbf{w}_1 \in W_1$ and $\mathbf{w}_2 \in W_2$.
 - (b) Let W_1, W_2, W_3 and W_4 be the following subspaces of \mathbb{R}^4 :

$$\begin{split} W_1 &= \left\{ \lambda(2,0,1,2) + \mu(0,1,-2,0) : \lambda, \mu \in \mathbb{R} \right\}, \\ W_2 &= \left\{ (a,b,c,d) \in \mathbb{R}^4 : a + 2c = 0 \text{ and } 2b - d = 0 \right\}, \\ W_3 &= \left\{ (a,b,c,d) \in \mathbb{R}^4 : 3b - d = 0 \right\}, \\ W_4 &= \left\{ \nu(0,2,0,1) : \nu \in \mathbb{R} \right\}. \end{split}$$

Determine whether or not (i) $\mathbb{R}^4 = W_1 \oplus W_2$, (ii) $\mathbb{R}^4 = W_1 \oplus W_3$, (iii) $\mathbb{R}^4 = W_3 \oplus W_4$.

2. (a) Let $T: V \to W$ be a linear transformation of vector spaces. Define what is meant by the *kernel of* T and the *image of* T. Prove that the kernel of T is a subspace of V, and that the image of T is a subspace of W.

(b) Which of the following are linear transformations? Justify your answers. For each one that is a linear transformation, find a basis for its kernel and a basis for its image, and hence find the dimensions of those subspaces.

(i) $T : \mathbb{R}^3 \to \mathbb{R}^4$, T(a, b, c) = (a, 0, b, 0);(ii) $T : \mathbb{R}^2 \to \mathbb{R}^3$, T(a, b) = (a - b, 0, 3b);(iii) $T : \mathbb{R}^3 \to \mathbb{R}^2$, T(a, b, c) = (1, 1).

3. (a) Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be a basis for a vector space V, and let $T : V \to V$ be a linear transformation. Explain what is meant by the matrix A of T with respect to the given basis.

(b) Consider the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by T(a, b, c) = (c, b, a). Write down the matrix A of T with respect to the standard basis. Find the matrix P such that $B = P^{-1}AP$ represents T with respect to the basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ where $\mathbf{u}_1 = (1, 0, 1)$, $\mathbf{u}_2 = (0, 1, 1)$, $\mathbf{u}_3 = (0, 1, 0)$. Hence find B.

(c) Find the eigenvalues and corresponding eigenvectors of the matrix

$$A = \left(\begin{array}{cc} 4 & -2\\ 2 & 0 \end{array}\right)$$

- 4. (a) Explain what is meant by the *characteristic polynomial* and the *minimum polynomial* of a square matrix A. Prove that, if A and B are similar matrices, then they have the same characteristic and minimum polynomials.
 - (b) You are given that the matrix

$$A = \begin{pmatrix} 7 & 1 & 1 & 1 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 6 & -2 \\ -1 & 1 & -1 & 7 \end{pmatrix}$$

has characteristic polynomial $\phi_A(x) = (x-6)^2(x-8)^2$. Find its Jordan canonical form and its minimum polynomial.

5. (a) Let V be a vector space. Define what is meant by an *inner product on* V.

(b) Let (V, \langle , \rangle) be an inner product space. Define what is meant by the *length* $\|\mathbf{v}\|$ of a vector $\mathbf{v} \in V$, and show that it satisfies the following properties for $\mathbf{u}, \mathbf{v} \in V$ and $\alpha \in \mathbb{R}$:

- (i) $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|;$
- (ii) $\|\mathbf{v}\| > 0$ if $\mathbf{v} \neq \mathbf{0}$ and $\|\mathbf{v}\| = 0$ if $\mathbf{v} = \mathbf{0}$;
- (iii) $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

[You may quote the Schwarz inequality for the inner product without proof.]

(c) Let (V, \langle , \rangle) be an inner product space. Explain what is meant by (i) an *orthogonal* basis, (ii) an *orthonormal basis* of V.

Let V the space \mathbb{R}^4 with its usual inner product. Use the Gram-Schmidt process to find an orthonormal basis for the subspace W spanned by the three vectors (1, 2, 0, 1), (0, 1, 0, -1), (0, -1, 2, 0).

END