(c) UNIVERSITY OF LEEDS

Examination for the Module MATH-2080
(January, 2003)

FURTHER LINEAR ALGEBRA

Time allowed : 2 hours
Answer four questions. All questions carry equal marks.

1. (a) Let W_{1}, W_{2} be subspaces of the vector space V. Prove that the following conditions are equivalent:
(i) $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\{\mathbf{0}\}$;
(ii) every vector \mathbf{v} in V can be expressed uniquely as a sum $\mathbf{v}=\mathbf{w}_{1}+\mathbf{w}_{2}$, with $\mathbf{w}_{1} \in W_{1}$ and $\mathbf{w}_{2} \in W_{2}$.
(b) Let W_{1}, W_{2}, W_{3} and W_{4} be the following subspaces of \mathbb{R}^{4} :

$$
\begin{aligned}
& W_{1}=\{\lambda(2,0,1,2)+\mu(0,1,-2,0): \lambda, \mu \in \mathbb{R}\}, \\
& W_{2}=\left\{(a, b, c, d) \in \mathbb{R}^{4}: a+2 c=0 \text { and } 2 b-d=0\right\}, \\
& W_{3}=\left\{(a, b, c, d) \in \mathbb{R}^{4}: 3 b-d=0\right\}, \\
& W_{4}=\{\nu(0,2,0,1): \nu \in \mathbb{R}\} .
\end{aligned}
$$

Determine whether or not (i) $\mathbb{R}^{4}=W_{1} \oplus W_{2}$, (ii) $\mathbb{R}^{4}=W_{1} \oplus W_{3}$, (iii) $\mathbb{R}^{4}=W_{3} \oplus W_{4}$.
2. (a) Let $T: V \rightarrow W$ be a linear transformation of vector spaces. Define what is meant by the kernel of T and the image of T. Prove that the kernel of T is a subspace of V, and that the image of T is a subspace of W.
(b) Which of the following are linear transformations? Justify your answers. For each one that is a linear transformation, find a basis for its kernel and a basis for its image, and hence find the dimensions of those subspaces.
(i) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}, \quad T(a, b, c)=(a, 0, b, 0)$;
(ii) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad T(a, b)=(a-b, 0,3 b)$;
(iii) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad T(a, b, c)=(1,1)$.
3. (a) Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ be a basis for a vector space V, and let $T: V \rightarrow V$ be a linear transformation. Explain what is meant by the matrix A of T with respect to the given basis.
(b) Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T(a, b, c)=(c, b, a)$. Write down the matrix A of T with respect to the standard basis. Find the matrix P such that $B=P^{-1} A P$ represents T with respect to the basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ where $\mathbf{u}_{1}=(1,0,1)$, $\mathbf{u}_{2}=(0,1,1), \mathbf{u}_{3}=(0,1,0)$. Hence find B.
(c) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{rr}
4 & -2 \\
2 & 0
\end{array}\right)
$$

4. (a) Explain what is meant by the characteristic polynomial and the minimum polynomial of a square matrix A. Prove that, if A and B are similar matrices, then they have the same characteristic and minimum polynomials.
(b) You are given that the matrix

$$
A=\left(\begin{array}{rrrr}
7 & 1 & 1 & 1 \\
0 & 8 & 0 & 0 \\
0 & 0 & 6 & -2 \\
-1 & 1 & -1 & 7
\end{array}\right)
$$

has characteristic polynomial $\phi_{A}(x)=(x-6)^{2}(x-8)^{2}$. Find its Jordan canonical form and its minimum polynomial.
5. (a) Let V be a vector space. Define what is meant by an inner product on V.
(b) Let $(V,\langle\rangle$,$) be an inner product space. Define what is meant by the length \|\mathbf{v}\|$ of a vector $\mathbf{v} \in V$, and show that it satisfies the following properties for $\mathbf{u}, \mathbf{v} \in V$ and $\alpha \in \mathbb{R}$:
(i) $\|\alpha \mathbf{v}\|=|\alpha|\|\mathbf{v}\|$;
(ii) $\|\mathbf{v}\|>0$ if $\mathbf{v} \neq \mathbf{0}$ and $\|\mathbf{v}\|=0$ if $\mathbf{v}=\mathbf{0}$;
(iii) $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$.
[You may quote the Schwarz inequality for the inner product without proof.]
(c) Let $(V,\langle\rangle$,$) be an inner product space. Explain what is meant by (i) an orthogonal$ basis, (ii) an orthonormal basis of V.

Let V the space \mathbb{R}^{4} with its usual inner product. Use the Gram-Schmidt process to find an orthonormal basis for the subspace W spanned by the three vectors $(1,2,0,1),(0,1,0,-1)$, $(0,-1,2,0)$.

END

