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Answer four questions. All questions carry equal marks.

1. (a) Let γ : R → R3 be given by γ(t) = (t3, sin t, t + 2t2). Show
that γ is a regular parametrized curve.

(b) Let γ : R → R3 be given by γ(t) = (1+3 cos t, 2t−1, 3 sin t).
Calculate the arc-length along γ from t = −1 to t = 2.

(c) Let γ : (0,∞) → R2 be given by γ(t) = (t2, t5 − t3).

(i) Calculate the speed of γ.

(ii) Calculate the unit tangent vector T (t) and unit normal
vector N(t).

(iii) What is the angle between T and N?

(iv) Compute γ′′(t) and hence the signed curvature of γ.

(v) Determine the proper inflexion points of γ.

2. (a) Let α(t) = (3 + 2 sin(t), 1 − 2 cos(t), 5 − t). Construct
the Frenet frame [T (π/2), N(π/2), B(π/2)] for α at time
t = π/2.

(b) Let γ : I → R3 be a unit speed space curve of nonvanishing
curvature. Suppose γ has Frenet frame [T (t), N(t), B(t)].

(i) Write down the Serre-Frenet formula for [T ′(t), N ′(t), B′(t)],
defining any functions you use.

(ii) Prove that the formula for N ′(t) is correct (assuming
those for T ′ and B′ are correct).

Q2 continues . . .
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(c) Let α be the space curve in part (a). Find N ′(t) and hence
given that curvature at t = π/2 is 2/

√
5 find the torsion

for α at t = π/2. Is there enough information to decide
whether the curve is planar or not? Explain your answer.

3. (a) Let γ : (a, b) → R2 be a smooth parametrized curve. De-
fine the involute of γ at t0 ∈ (a, b), which we shall denote
by Iγ.

(b) Suppose that γ above is unit speed and we denote the
signed curvature of γ by κ±γ (t).

(i) Calculate |I ′γ(t)|, TIγ
(t) and NIγ

(t) in terms of functions
and vectors associated to γ. You may assume the for-
mulas T ′γ(t) = κ±γ (t)Nγ(t) and N ′

γ(t) = −κ±γ (t)Tγ(t) for
a unit speed curve γ.

(ii) Hence show that, for t 6= t0, the signed curvature κ±I of
Iγ is given by

κI(t) =
sign

(
κ±γ (t)

)
|t− t0|

.

(c) Given a prescribed smooth function κ : R → R there exists
a unique unit speed curve γ : R → R2 with γ(0) = (0, 0),
γ′(0) = (1, 0) and signed curvature κ. The curves corre-
sponding to the following signed curvature functions

(a) t2 (b) 2 + 5 cos(5t) (c) − (4t4 − 3t2 + 2)

(d) 4t3 − 3t2 + 2 (e) 2t3 − 5t

are depicted on the next page in the wrong order. Deter-
mine which curve corresponds to which signed curvature.
Justify your answers.

Q3 continues . . .
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(iv) (v)

4. Let M : R2 → R3 be given by M(x, y) = (y, x+y2, y+cos(xy)).

(a) Define the term regular parametrized surface and show that
M above is a regular parametrized surface.

(b) Let p = (2, 4, 3) = M(0, 2). Determine whether the follow-
ing vectors are tangent to M , normal to M or neither.

(i) u = (1, 4,−2), (ii) u = (3, 1, 3).

(c) Let f(y1, y2, y3) = y3
1 − 2y2. Given that w = (2, 5, 2) is

a tangent vector at p = (2, 4, 3), compute the directional
derivative ∇wf .

Continued . . .
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5. Suppose that M is a regular parametrized surface and p ∈ M .

(a) Define

(i) the shape operator at p,

(ii) the normal curvature at p,

(iii) the principal curvatures at p, and

(iv) the principal curvature directions at p.

(b) Suppose that p ∈ M . The matrix representing the shape
operator at p of a surface M with respect to the coordinate
basis [ε1, ε2] is

Ŝp =

[
3 −2
−2 3

]
.

Determine the principal curvatures κ1, κ2 and the corre-
sponding unit vectors that give the principal directions u1

and u2.

Determine the Gauss and Mean curvature at p for this M .

(c) Let kp : UpM → R denote the normal curvature function at
p. In each of the following cases either construct a tangent
vector v ∈ TpM with the specified properties or explain
why no such vector exists.

(i) A unit vector v with kp(v) = 5.

(ii) A unit vector v with kp(v) = −1.

(iii) A vector v with Sp(v) = 2v.

(iv) A vector v with kp(v) = 3.

The End


