MATH-205101

This question paper consists of 4 printed pages, each of which is identified by the reference MATH-2051. Only approved basic scientific calculators may be used.

©UNIVERSITY OF LEEDS

Examination for the module MATH-2051 (January 2007)

GEOMETRY OF CURVES AND SURFACES

Time allowed : 2 hours

Answer **four** questions. All questions carry equal marks.

- 1. (a) Let $\gamma : \mathbb{R} \to \mathbb{R}^3$ be given by $\gamma(t) = (t^3, \sin t, t + 2t^2)$. Show that γ is a regular parametrized curve.
 - (b) Let $\gamma : \mathbb{R} \to \mathbb{R}^3$ be given by $\gamma(t) = (1+3\cos t, 2t-1, 3\sin t)$. Calculate the arc-length along γ from t = -1 to t = 2.
 - (c) Let $\gamma : (0, \infty) \to \mathbb{R}^2$ be given by $\gamma(t) = (t^2, t^5 t^3)$.
 - (i) Calculate the speed of γ .
 - (ii) Calculate the unit tangent vector T(t) and unit normal vector N(t).
 - (iii) What is the angle between T and N?
 - (iv) Compute $\gamma''(t)$ and hence the signed curvature of γ .
 - (v) Determine the proper inflexion points of γ .
- 2. (a) Let $\alpha(t) = (3 + 2\sin(t), 1 2\cos(t), 5 t)$. Construct the Frenet frame $[T(\pi/2), N(\pi/2), B(\pi/2)]$ for α at time $t = \pi/2$.
 - (b) Let $\gamma: I \to \mathbb{R}^3$ be a unit speed space curve of nonvanishing curvature. Suppose γ has Frenet frame [T(t), N(t), B(t)].
 - (i) Write down the Serre-Frenet formula for [T'(t), N'(t), B'(t)], defining any functions you use.
 - (ii) Prove that the formula for N'(t) is correct (assuming those for T' and B' are correct).

Q2 continues \dots

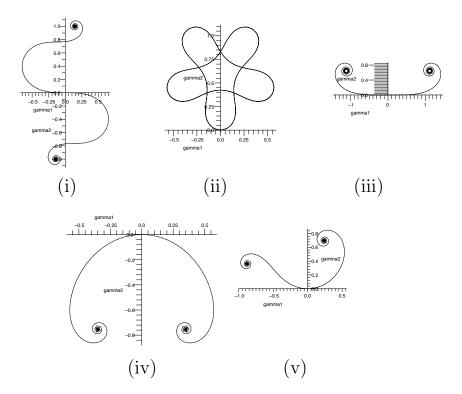
- (c) Let α be the space curve in part (a). Find N'(t) and hence given that curvature at $t = \pi/2$ is $2/\sqrt{5}$ find the torsion for α at $t = \pi/2$. Is there enough information to decide whether the curve is planar or not? Explain your answer.
- 3. (a) Let $\gamma : (a, b) \to \mathbb{R}^2$ be a smooth parametrized curve. Define the *involute* of γ at $t_0 \in (a, b)$, which we shall denote by I_{γ} .
 - (b) Suppose that γ above is unit speed and we denote the signed curvature of γ by $\kappa_{\gamma}^{\pm}(t)$.
 - (i) Calculate $|I'_{\gamma}(t)|$, $T_{I_{\gamma}}(t)$ and $N_{I_{\gamma}}(t)$ in terms of functions and vectors associated to γ . You may assume the formulas $T'_{\gamma}(t) = \kappa_{\gamma}^{\pm}(t)N_{\gamma}(t)$ and $N'_{\gamma}(t) = -\kappa_{\gamma}^{\pm}(t)T_{\gamma}(t)$ for a unit speed curve γ .
 - (ii) Hence show that, for $t \neq t_0$, the signed curvature κ_I^{\pm} of I_{γ} is given by

$$\kappa_I(t) = rac{\operatorname{sign}\left(\kappa_{\gamma}^{\pm}(t)\right)}{|t - t_0|}.$$

(c) Given a prescribed smooth function $\kappa : \mathbb{R} \to \mathbb{R}$ there exists a unique unit speed curve $\gamma : \mathbb{R} \to \mathbb{R}^2$ with $\gamma(0) = (0,0)$, $\gamma'(0) = (1,0)$ and signed curvature κ . The curves corresponding to the following signed curvature functions

(a)
$$t^2$$
 (b) $2 + 5\cos(5t)$ (c) $-(4t^4 - 3t^2 + 2)$
(d) $4t^3 - 3t^2 + 2$ (e) $2t^3 - 5t$

are depicted on the next page in the wrong order. Determine which curve corresponds to which signed curvature. Justify your answers.



- 4. Let $M : \mathbb{R}^2 \to \mathbb{R}^3$ be given by $M(x, y) = (y, x + y^2, y + \cos(xy))$.
 - (a) Define the term regular parametrized surface and show that M above is a regular parametrized surface.
 - (b) Let p = (2, 4, 3) = M(0, 2). Determine whether the following vectors are tangent to M, normal to M or neither.

(i)
$$u = (1, 4, -2),$$
 (ii) $u = (3, 1, 3).$

(c) Let $f(y_1, y_2, y_3) = y_1^3 - 2y_2$. Given that w = (2, 5, 2) is a tangent vector at p = (2, 4, 3), compute the directional derivative $\nabla_w f$.

Continued ...

- 5. Suppose that M is a regular parametrized surface and $p \in M$.
 - (a) Define
 - (i) the shape operator at p,
 - (ii) the normal curvature at p,
 - (iii) the principal curvatures at p, and
 - (iv) the principal curvature directions at p.
 - (b) Suppose that $p \in M$. The matrix representing the shape operator at p of a surface M with respect to the coordinate basis $[\epsilon_1, \epsilon_2]$ is

$$\widehat{S}_p = \left[\begin{array}{cc} 3 & -2 \\ -2 & 3 \end{array} \right].$$

Determine the principal curvatures κ_1 , κ_2 and the corresponding *unit* vectors that give the principal directions u_1 and u_2 .

Determine the Gauss and Mean curvature at p for this M.

- (c) Let $k_p : U_p M \to \mathbb{R}$ denote the normal curvature function at *p*. In each of the following cases *either* construct a tangent vector $v \in T_p M$ with the specified properties *or* explain why no such vector exists.
 - (i) A unit vector v with $k_p(v) = 5$.
 - (ii) A unit vector v with $k_p(v) = -1$.
 - (iii) A vector v with $S_p(v) = 2v$.
 - (iv) A vector v with $k_p(v) = 3$.

The End