© UNIVERSITY OF LEEDS

Examination for the Module MATH-2021
(May-June 2001)

COMPLEX ANALYSIS

Time allowed : 2 hours

Do not answer more than four questions. All questions carry equal marks.

1. State what is meant by the radius of convergence of a complex power series $\sum a_{n} z^{n}$, and calculate the radii of convergence of the following series:
(a) $\sum_{n=0}^{\infty} z^{2^{n}} ;$
(b) $\sum_{n=0}^{\infty} n!z^{n}$;
(c) $\sum_{n=0}^{\infty} 2^{n} z^{n}$;
(d) $\sum_{n=1}^{\infty} \frac{z^{2 n}}{(2 n-1)(n!)}$.

A power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ has radius of convergence $R>0$ and defines a function $f(z)$ on $\{z \in \mathbb{C}:|z|<R\}$. Write down the power series for the functions $f^{\prime}(z)$ and $f(2 z)$, and state without proof their radii of convergence.

Show that there is an entire function $f: \mathbb{C} \rightarrow \mathbb{C}$, expressible as the sum of a power series, such that

$$
f(0)=0, \quad f^{\prime}(0)=0, \quad \text { and } \quad f^{\prime \prime}(z)=\exp \left(z^{2}\right) \quad \text { for all } \quad z \in \mathbb{C} .
$$

2. (a) Let U be an open set in \mathbb{C} and let $f: U \rightarrow \mathbb{C}$ be an analytic function. Suppose that $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$, and u and v are real-valued functions. Prove that u and v satisfy the Cauchy-Riemann equations.
(b) Given also that u and v are C^{2} functions, deduce that they are harmonic.
(c) For each of the following functions determine whether it is the real part of an analytic function defined on \mathbb{C}. If it is, determine a corresponding imaginary part.
(i) $u(x, y)=x^{2}-y^{2}+2 x y$;
(ii) $u(x, y)=x^{3}-y^{3}+3 x^{2} y$.
3. (a) State Liouville's Theorem on entire functions and the Maximum Modulus Principle.

Let $p(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ be a nonconstant polynomial. Show that there is a number $R>0$ such that

$$
|p(z)| \geq \frac{|z|^{n}}{2} \quad \text { for } \quad|z| \geq R
$$

By considering $f(z)=\frac{1}{p(z)}$ and using the results above, deduce that p has a zero in \mathbb{C}.
(b) Write down entire functions $g(z), h(z)$ such that:
(i) $g(z)$ has no zeroes in \mathbb{C};
(ii) $h(z)$ has infinitely many zeroes in \mathbb{C}.

Briefly justify your answers.
4. (a) Explain what a contour in \mathbb{C} is, and define its length.

Give the definition of $\int_{\gamma} f(z) d z$ for a continuous function f on a contour γ.
(b) Evaluate the following integrals, where in each case γ is the unit circle taken once anticlockwise. (Standard results may be quoted without proof.)
(i) $\int_{\gamma} \frac{\cos (1 / z)}{z^{2}} d z$;
(ii) $\int_{\gamma}|z+2|^{2} d z$;
(iii) $\int_{\gamma} \tan z d z$;
(iv) $\int_{\gamma} \frac{\exp \left(z^{2}\right)}{z(z+3)} d z$.
5. Calculate the following integrals using complex variable techniques.
(a) $\int_{0}^{2 \pi} \frac{d \theta}{1+8 \cos ^{2} \theta}$;
(b) $\int_{-\infty}^{\infty} \frac{\cos x d x}{2 x^{4}+5 x^{2}+2}$.

END

