MATH-201101

This question paper consists of 2 printed pages, each of which is identified by the reference MATH-201101

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-2011

(January 2004)

Real Analysis 2

Time allowed: 2 hours

Answer **four** questions. All questions carry equal marks.

1. (a) State Taylor's Theorem, giving both Lagrange's and Cauchy's forms of the remainder.

Use Taylor's Theorem for the function $\sin(\pi e^x)$ to prove that if $x \ge 0$ then

$$|\sin(\pi e^x) + \pi x| \leq \frac{1}{2}x^2\pi e^x(1+\pi e^x).$$

- (b) Use Taylor's Theorem to express $x^3 + 5x^2 2x + 4$ as a polynomial in x + 4.
- 2. (a) Determine whether or not each of the following sequences has a convergent subsequence. Give reasons for your answers.
 - (i) $x_n = \cos \frac{n\pi}{5} + \sin \frac{n\pi}{7}$,

$$(ii) \quad x_n = \left(\frac{3}{4}\right)^n - \left(\frac{4}{3}\right)^n,$$

(*iii*) $x_n = n^2 \left(\cos \frac{n\pi}{4} - \sin \frac{n\pi}{4} \right).$

(b) Give the definition of a *Cauchy sequence*. Prove from your definition that every subsequence of a Cauchy sequence is a Cauchy sequence.

Prove also that if a Cauchy sequence (x_n) has a subsequence that converges to a limit ℓ , then (x_n) converges to ℓ .

3. (a) Define what is meant by saying that the function $f: J \to \mathbb{R}$ is uniformly continuous on the interval $J \subseteq \mathbb{R}$. Prove that if f has a bounded derivative on J, say $|f'(x)| \leq M$ for all x in J, then f is uniformly continuous on J.

(b) Find the upper and lower Riemann sums for the function $f(x) = 3 - 2x^2$ on [1, 2] for a dissection of the interval into n equal subintervals. Hence find the value of $\int_1^2 (3 - 2x^2) dx$. [You may assume that $\sum_{r=1}^n r^2 = \frac{1}{6}n(n+1)(2n+1)$.]

- 4. (a) State both the first and the second forms of the Fundamental Theorem of the Calculus. Prove the second form, assuming the truth of the first.
 - (b) Find $\frac{d}{dx} \int_{x}^{x^2} \cos\left(\frac{\pi}{t}\right) dt$, for x > 0.
 - (c) Find which of the following improper integrals converge, and evaluate any that do:

(i)
$$\int_{1}^{\infty} \frac{1}{x^2 + 3x} dx$$
, (ii) $\int_{1}^{\infty} \frac{1}{1 + \sqrt{x}} dx$.

5. (a) Explain what is meant by saying that a sequence of functions (f_n) converges uniformly to a limit function f on a set J. Prove that if each f_n is continuous then f is also continuous.

(b) Define sequences of functions (f_n) , (g_n) by $f_n(x) = e^{-nx} \cos x$, $g_n(x) = e^{-nx} \sin x$. By finding its pointwise limit, deduce from part (a) that (f_n) does not converge uniformly on $[0, \pi/2]$. Show however that (g_n) does converge uniformly on $[0, \pi/2]$.

(c) Use the power series expansion for e^x to show that

$$\int_0^a e^{-t^2} dt = \sum_{n=0}^\infty \frac{(-1)^n a^{2n+1}}{n!(2n+1)},$$

indicating any theorems on uniform convergence that you use.

END