MATH-201101

This question paper consists of 2 printed pages, each of which is identified by the reference MATH-201101

Only approved basic scientific calculators may be used.
© UNIVERSITY OF LEEDS
Examination for the Module MATH-2011
(January 2004)

Real Analysis 2

Time allowed: 2 hours
Answer four questions. All questions carry equal marks.

1. (a) State Taylor's Theorem, giving both Lagrange's and Cauchy's forms of the remainder. Use Taylor's Theorem for the function $\sin \left(\pi e^{x}\right)$ to prove that if $x \geqslant 0$ then

$$
\left|\sin \left(\pi e^{x}\right)+\pi x\right| \leqslant \frac{1}{2} x^{2} \pi e^{x}\left(1+\pi e^{x}\right)
$$

(b) Use Taylor's Theorem to express $x^{3}+5 x^{2}-2 x+4$ as a polynomial in $x+4$.
2. (a) Determine whether or not each of the following sequences has a convergent subsequence. Give reasons for your answers.
(i) $x_{n}=\cos \frac{n \pi}{5}+\sin \frac{n \pi}{7}$,
(ii) $x_{n}=\left(\frac{3}{4}\right)^{n}-\left(\frac{4}{3}\right)^{n}$,
(iii) $x_{n}=n^{2}\left(\cos \frac{n \pi}{4}-\sin \frac{n \pi}{4}\right)$.
(b) Give the definition of a Cauchy sequence. Prove from your definition that every subsequence of a Cauchy sequence is a Cauchy sequence.

Prove also that if a Cauchy sequence $\left(x_{n}\right)$ has a subsequence that converges to a limit ℓ, then $\left(x_{n}\right)$ converges to ℓ.
3. (a) Define what is meant by saying that the function $f: J \rightarrow \mathbb{R}$ is uniformly continuous on the interval $J \subseteq \mathbb{R}$. Prove that if f has a bounded derivative on J, say $\left|f^{\prime}(x)\right| \leqslant M$ for all x in J, then f is uniformly continuous on J.
(b) Find the upper and lower Riemann sums for the function $f(x)=3-2 x^{2}$ on [1,2] for a dissection of the interval into n equal subintervals. Hence find the value of $\int_{1}^{2}\left(3-2 x^{2}\right) d x$. [You may assume that $\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$.]
4. (a) State both the first and the second forms of the Fundamental Theorem of the Calculus. Prove the second form, assuming the truth of the first.
(b) Find $\frac{d}{d x} \int_{x}^{x^{2}} \cos \left(\frac{\pi}{t}\right) d t$, for $x>0$.
(c) Find which of the following improper integrals converge, and evaluate any that do:

$$
\text { (i) } \quad \int_{1}^{\infty} \frac{1}{x^{2}+3 x} d x, \quad \text { (ii) } \quad \int_{1}^{\infty} \frac{1}{1+\sqrt{x}} d x
$$

5. (a) Explain what is meant by saying that a sequence of functions $\left(f_{n}\right)$ converges uniformly to a limit function f on a set J. Prove that if each f_{n} is continuous then f is also continuous.
(b) Define sequences of functions $\left(f_{n}\right),\left(g_{n}\right)$ by $f_{n}(x)=e^{-n x} \cos x, g_{n}(x)=e^{-n x} \sin x$. By finding its pointwise limit, deduce from part (a) that $\left(f_{n}\right)$ does not converge uniformly on $[0, \pi / 2]$. Show however that $\left(g_{n}\right)$ does converge uniformly on $[0, \pi / 2]$.
(c) Use the power series expansion for e^{x} to show that

$$
\int_{0}^{a} e^{-t^{2}} d t=\sum_{n=0}^{\infty} \frac{(-1)^{n} a^{2 n+1}}{n!(2 n+1)}
$$

indicating any theorems on uniform convergence that you use.

