MATH1970-01

This question paper consists of 2
Only approved basic scienprinted pages, each of which is identified by the reference MATH1970-01
© UNIVERSITY OF LEEDS

Examination for the Module MATH1970

(May 2004)

Differential Equations

Time allowed: 2 hours

Attempt no more than 4 questions.
You must show your working in answers to all questions.

1. (a) Find the solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}-\pi y=0
$$

with the initial condition $y(0)=\frac{1}{2}$. Sketch the solution.
(b) Find the solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}-\pi y=-\frac{\pi}{2}
$$

with the initial condition $y(0)=1$. Sketch the solution.
(c) Find the solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}-\pi y=-y^{3},
$$

with the initial condition $y(0)=\sqrt{\pi / 2}$. Sketch the solution.
2. (a) Find the general solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}-2 t y=t
$$

(b) Find the general solution of the differential equation

$$
\frac{2 y(x-1)}{y^{2}+1} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\ln \left(y^{2}+1\right)=0 .
$$

(c) Find the general solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x}+\frac{1}{3}\left(\frac{x}{y}\right)^{2}
$$

3. (a) Find the general solution of the differential equation

$$
y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=0
$$

Hint: Check that you have two linearly independent solutions by calculating the Wronskian, $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)$.
(b) Three solutions of a certain second-order inhomogeneous linear differential equation are

$$
y_{\mathrm{i}}(t)=1+\mathrm{e}^{t^{2}}, \quad y_{\mathrm{ii}}(t)=1+t \mathrm{e}^{t^{2}}, \quad y_{\mathrm{iii}}(t)=(t+1) \mathrm{e}^{t^{2}}+1 .
$$

Find the general solution of the differential equation.
The differential equation is of the form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) .
$$

Find $p(t), q(t)$ and $g(t)$.
Hint: the Wronskian is related to $p(t)$ by $W(t)=A \exp \left(-\int p(t) \mathrm{d} t\right)$.
4. (a) Find the general solution of the differential equation

$$
\begin{equation*}
m \ddot{x}=-k x \tag{1}
\end{equation*}
$$

(b) Find the solution of (1) with the initial conditions $x(0)=-U, \dot{x}(0)=V$, where $U>0$ and $V>0$.
Write your solution in the form

$$
x(t)=A \cos (\omega t-\phi) .
$$

Find A, ω and ϕ in terms of U and V. Sketch $x(t)$ and $\dot{x}(t)$.
(c) Find a particular solution of the differential equation

$$
\ddot{x}+x=\cos x \text {. }
$$

5. The set of equations

$$
\begin{aligned}
x_{1}^{\prime} & =\alpha x_{1}+3 x_{2} \\
x_{2}^{\prime} & =-3 x_{1},
\end{aligned}
$$

can be written as one equation by defining $\mathbf{x}=\binom{x_{1}}{x_{2}}$. Then

$$
\mathrm{x}^{\prime}=\left(\begin{array}{cc}
\alpha & 3 \tag{2}\\
-3 & 0
\end{array}\right) \mathrm{x}
$$

The eigenvalues of the 2×2 matrix in (2) satisfy $\lambda^{2}-\alpha \lambda+9=0$.
(a) What type of fixed point is the origin (stable node, unstable node, saddle, centre, stable spiral or unstable spiral) if $\alpha=5$?
(b) What type of fixed point is the origin if $\alpha=10$?
(c) Sketch the trajectory for $\alpha=0$ with the initial condition $x_{1}=1, x_{2}=0$.
(d) Sketch the trajectory for $\alpha=10$ with the initial condition $x_{1}=1, x_{2}=0$.

What is the value of $\frac{x_{2}}{x_{1}}$ as $t \rightarrow \infty$?

END

