MATH196001

This question paper consists of 3 printed pages, each of which is identified by the reference MATH196001.

© UNIVERSITY OF LEEDS

Examination for the Module MATH1960
(January 2006)
CALCULUS
Time allowed: $\mathbf{2}$ hours
Attempt all six questions from Section A and no more than three questions from Section B.

Section A is worth 40% and Section B 60\% of the available marks.

SECTION A

A1. Differentiate with respect to x the functions
(a) $\sin \left(x^{4}\right)$,
(b) $x^{3} \ln (5 x)$.

A2. Starting from the definitions

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}, \sinh x=\frac{e^{x}-e^{-x}}{2}
$$

of the basic hyperbolic functions, prove the identity $\sinh (x-y)=\sinh x \cosh y-\cosh x \sinh y$.

A3. Using the result $\frac{d y}{d x}=\left(\frac{d x}{d y}\right)^{-1}$, show that, if $y=\sin ^{-1} x$, then

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

A4. Obtain the first two derivatives of the function $f(x)=x^{-1}$ and hence obtain the first three terms of its Taylor series about $x=1$.

A5. Find the tangent plane to the surface $z=x^{2}+y^{3}$ at the point $x=2, y=1$, giving your answer in the form $a x+b y+c z=d$.

A6. Use integration by parts to find the indefinite integral

$$
\int x \sin x d x .
$$

Hence, find the value of $\int_{0}^{\pi} x \sin x d x$.

SECTION B

B1. (a) Show that the first derivative of the function

$$
f(x)=\frac{2 x-1}{x-1} \exp (x)
$$

can be written in the form

$$
\frac{d f}{d x}=\frac{a x^{2}-b x}{(x-1)^{2}} \exp (x)
$$

where a and b are numbers which you are required to find.
(b) Find and classify the stationary points of $f(x)$.
[Hint: consider the sign of the first derivative on either side of each stationary point].
(c) Sketch a graph of $f(x)$, indicating stationary points, axis crossings and horizontal and vertical asymptotes.

B2. (a) Find the gradient of the function $f(x, y)=4 x y-x^{2}-4 y^{2}+\exp \left(x^{3}-3 x^{2}\right)$.
(b) Find the second-order partial derivatives $f_{x y}$ and $f_{y y}$, and show that

$$
f_{x x}=-2+\left(6 x-6+9\left(x^{2}-2 x\right)^{2}\right) \exp \left(x^{3}-3 x^{2}\right)
$$

(c) Find and classify the stationary points of $f(x, y)$, giving the values of x, y and f at each point.

B3. (a) The volume of a cone of base radius x and height y is given by

$$
V=\frac{\pi}{3} f(x, y) \quad \text { where } \quad f(x, y)=x^{2} y
$$

and the area of its curved surface is

$$
A=\pi g(x, y) \quad \text { where } \quad g(x, y)=x\left(x^{2}+y^{2}\right)^{\frac{1}{2}} .
$$

Find the maximum volume of a cone subject to the constraint of a fixed area A (i.e. $g(x, y)=$ constant) and find the values of x and y which correspond to this maximum volume. Express your answers in terms of the area, A.
(b) For the curve defined by $x\left(x^{2}+y^{2}\right)^{\frac{1}{2}}=1$ show that

$$
\frac{d y}{d x}=-\frac{2 x^{2}+y^{2}}{x y} .
$$

B4. (a) Use the substitution $u=x^{2}+1$ to evaluate

$$
\int_{0}^{1} \frac{x^{5}}{x^{2}+1} d x
$$

(b) Using partial fractions, find the indefinite integral

$$
\int \frac{5 x-1}{x^{3}-2 x^{2}-x+2} d x .
$$

[Hint: Note that $x=1$ is a solution of $x^{3}-2 x^{2}-x+2=0$.]

