(c) UNIVERSITY OF LEEDS

Examination for the Module MATH-1150
(May/June 2007)

Mathematics for Geophysics 2

Time allowed: 2 hours

Answer four questions.
All questions carry equal marks.

1. (a) In each of the following cases, find the function $f(t)$ for which its Laplace transform, $\bar{f}(p)$ is given by
(i) $\frac{1}{p+2}$
(ii) $\frac{1}{(p+2)(p+3)}$
(iii)
$\frac{p}{(p+2)(p+3)}$
(iv) $\frac{p}{(p+2)^{2}}$

$$
\text { (v) } \frac{p^{2}}{(p+2)(p+3)}
$$

(b) A seismometer has a transfer function with two zeros at 0 and two poles at -2 and -3 . Write down the transfer function and, using your results from part (a) or otherwise, compute the response of the seismometer to a unit impulse at $t=0$.

You may use without proof any standard Laplace transform results including the shift theorem.
2. (a) For each of the following second order ordinary differential equations, find their general solution.

$$
\begin{align*}
& \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-15 y=\sin x \tag{i}\\
& \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}-5 y=e^{x} \tag{ii}
\end{align*}
$$

(b) Solve the following second order ordinary differential equation with the given boundary conditions:

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=2 x+5, \quad y(0)=9, y(1)=11+e
$$

3. Solve the following first order ordinary differential equations with the given boundary condition:
(a)

$$
y(0)=1
$$

(b)

$$
\frac{d y}{d x}=y^{2} \cos x
$$

$$
\begin{equation*}
\frac{d y}{d x}-3 \frac{y}{x}=\frac{2}{x^{2}} \tag{b}
\end{equation*}
$$

$$
y(1)=2
$$

(c)

$$
\frac{d y}{d x}=\frac{y}{x}+e^{(y / x)}
$$

$$
y(1)=0
$$

$$
\begin{equation*}
-\frac{d y}{d x} \sin y \sin x+\cos y \cos x=1 \tag{d}
\end{equation*}
$$

$$
y\left(\frac{\pi}{2}\right)=0
$$

4. (a) Let $f(x, y)=\sin \left(x+e^{y}\right)$. Find the Taylor series to second order about the point $(\pi-2, \ln 2)$.
(b) The function $u(x, y)$ is expressible in terms of the polar coordinates (r, θ) through the relations

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

(i) By solving for r and θ in terms of x and y, find the partial derivatives

$$
\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}, \frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}
$$

(ii) Hence using the chain rule, show that

$$
\frac{\partial u}{\partial x}=\cos \theta \frac{\partial u}{\partial r}-\frac{\sin \theta}{r} \frac{\partial u}{\partial \theta}, \quad \frac{\partial u}{\partial y}=\sin \theta \frac{\partial u}{\partial r}+\frac{\cos \theta}{r} \frac{\partial u}{\partial \theta}
$$

(iii) Using the chain rule again, find the derivatives

$$
\frac{\partial u^{2}}{\partial x^{2}}, \frac{\partial u^{2}}{\partial y^{2}}
$$

in terms of r, θ and derivatives of u with respect to r and θ, and show that

$$
\frac{\partial u^{2}}{\partial x^{2}}+\frac{\partial u^{2}}{\partial y^{2}}=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{\partial^{2} u}{\partial \theta^{2}}
$$

5. (a) For each of the following functions
(i) $\quad f(x)=\cos x$
(ii) $\quad f(x)=|\sin (2 x)|$
(iii) $\quad f(x)=\sinh x$
(1) sketch the graphs in the range $-2 \pi \leq x \leq 2 \pi$,
(2) determine which are periodic, for those that are, state the period and
(3) state whether the function is even, odd or neither.
(b) Let f be defined by $f(x)=x$ over the interval $[0, \pi]$.
(i) If $f(x)$ is even over the interval $[-\pi, \pi]$ and periodic with period 2π, find its Fourier series.
(ii) If $f(x)$ is odd over the interval $[-\pi, \pi]$ and periodic with period 2π, find its Fourier series.
6. A second order ordinary differential equation is defined as

$$
\frac{d^{2} y}{d t^{2}}-6 \frac{d y}{d t}+9 y=9
$$

with the boundary conditions $y(0)=y^{\prime}(0)=1$.
(a) By trying solutions of the form $y=e^{\lambda t}$, solve the differential equation using the standard method.
(b) By taking the Laplace transform of the differential equation, show that $\bar{y}(p)=\mathcal{L}(y(t))$ can be written

$$
\bar{y}(p)=\frac{1}{p}+\frac{1}{p^{2}-6 p+9} .
$$

Hence invert the Laplace transform to find the solution of the differential equation.
You may use without proof any standard Laplace transform results including the shift theorem.

END

