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Answer four questions.
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1. (a) In each of the following cases, find the function f(t) for which its Laplace transform,
f̄(p) is given by

(i)
1

p + 2
(ii)

1

(p + 2)(p + 3)

(iii)
p

(p + 2)(p + 3)
(iv)

p

(p + 2)2

(v)
p2

(p + 2)(p + 3)

(b) A seismometer has a transfer function with two zeros at 0 and two poles at −2 and
−3. Write down the transfer function and, using your results from part (a) or otherwise,
compute the response of the seismometer to a unit impulse at t = 0.

You may use without proof any standard Laplace transform results including the shift the-
orem.

2. (a) For each of the following second order ordinary differential equations, find their general
solution.

(i)
d2y

dx2
+ 2

dy

dx
− 15y = sin x

(ii)
d2y

dx2
+ 4

dy

dx
− 5y = ex

(b) Solve the following second order ordinary differential equation with the given
boundary conditions:

d2y

dx2
− 2

dy

dx
+ y = 2x + 5 , y(0) = 9, y(1) = 11 + e.
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3. Solve the following first order ordinary differential equations with the given
boundary condition:

(a)
dy

dx
= y2 cos x y(0) = 1

(b)
dy

dx
− 3

y

x
=

2

x2
y(1) = 2

(c)
dy

dx
=

y

x
+ e(y/x) y(1) = 0

(d) − dy

dx
sin y sin x + cos y cos x = 1 y(

π

2
) = 0

4. (a) Let f(x, y) = sin(x + ey). Find the Taylor series to second order about the point
(π − 2, ln 2).

(b) The function u(x, y) is expressible in terms of the polar coordinates (r, θ) through the
relations

x = r cos θ, y = r sin θ

(i) By solving for r and θ in terms of x and y, find the partial derivatives

∂r

∂x
,

∂r

∂y
,
∂θ

∂x
,
∂θ

∂y

(ii) Hence using the chain rule, show that

∂u

∂x
= cos θ

∂u

∂r
− sin θ

r

∂u

∂θ
,

∂u

∂y
= sin θ

∂u

∂r
+

cos θ

r

∂u

∂θ

(iii) Using the chain rule again, find the derivatives

∂u2

∂x2
,

∂u2

∂y2

in terms of r, θ and derivatives of u with respect to r and θ, and show that

∂u2

∂x2
+

∂u2

∂y2
=

∂2u

∂r2
+

1

r

∂u

∂r
+

∂2u

∂θ2
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5. (a) For each of the following functions

(i) f(x) = cos x

(ii) f(x) = | sin(2x)|
(iii) f(x) = sinh x

(1) sketch the graphs in the range −2π ≤ x ≤ 2π,

(2) determine which are periodic, for those that are, state the period and

(3) state whether the function is even, odd or neither.

(b) Let f be defined by f(x) = x over the interval [0, π].

(i) If f(x) is even over the interval [−π, π] and periodic with period 2π, find its Fourier
series.

(ii) If f(x) is odd over the interval [−π, π] and periodic with period 2π, find its Fourier
series.

6. A second order ordinary differential equation is defined as

d2y

dt2
− 6

dy

dt
+ 9y = 9,

with the boundary conditions y(0) = y′(0) = 1.

(a) By trying solutions of the form y = eλ t, solve the differential equation using the standard
method.

(b) By taking the Laplace transform of the differential equation, show that ȳ(p) = L(
y(t)

)

can be written

ȳ(p) =
1

p
+

1

p2 − 6p + 9
.

Hence invert the Laplace transform to find the solution of the differential equation.

You may use without proof any standard Laplace transform results including the shift the-
orem.
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