(C) UNIVERSITY OF LEEDS Examination for the Module MATH-1150
(May/June 2005)

Mathematics for Geophysics 2

Time allowed: 2 hours

Answer four questions.
All questions carry equal marks.

1. (a) Find the Taylor series about the point $(0,1)$ of the function

$$
f(x, y)=\left(e^{x}+y^{2}-1\right)^{10}
$$

up to and including the quadratic terms.
(b) Find the critical points of the function

$$
f(x, y)=x^{4}-2 x^{2}+y^{3}-3 y+1
$$

and determine whether they are minima, maxima or saddle points.
2. Solve the following first order ordinary differential equations with the given boundary condition:
(a)

$$
\begin{array}{ll}
\frac{d y}{d x}=\frac{y^{3}}{x^{4}} & y(1)=1 \\
\frac{d y}{d x}+\frac{y}{x}=x^{3} & y(1)=2 \\
\frac{d y}{d x}-\frac{2 x y}{1+x^{2}}=1 & y(0)=0 \\
\frac{d y}{d x} \sin x+y \cos x=-1 & y\left(\frac{\pi}{2}\right)=0
\end{array}
$$

(b)
3. (a) Find the general solution to the following second order ordinary differential equation:

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=x
$$

(b) Solve the following second order ordinary differential equations with the given boundary conditions:

$$
\begin{array}{ll}
\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+10 y=0 & y(0)=0, y^{\prime}(0)=1 \\
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=e^{2 x} & y(0)=0, y^{\prime}(0)=0 \tag{ii}
\end{array}
$$

4. (a) Let $f(x, y, z)=\cos \left(x^{2} y+\ln z\right)$. Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$ and $\frac{\partial^{2} f}{\partial x \partial z}$.
(b) A function $f(x, y)$ is defined in terms of variables x and y, which in turn may be expressed as

$$
x=e^{s} \cos \theta \quad y=e^{s} \sin \theta
$$

By first solving for s and θ in terms of x and y, compute the derivatives

$$
\frac{\partial s}{\partial x}, \frac{\partial s}{\partial y}, \quad \frac{\partial \theta}{\partial x} \text { and } \frac{\partial \theta}{\partial y}
$$

Hence express the derivatives

$$
\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y} \text { and } \frac{\partial f}{\partial x^{2}}
$$

in terms of s and θ, and derivatives of f with respect to s and θ.
5. (a) Sketch the graph of the periodic extension of period 2π of the function

$$
f(x)= \begin{cases}1 & 0<x<\pi \\ 0 & \pi \leq x \leq 2 \pi\end{cases}
$$

and find its complex Fourier series.
(b) A function $f(x)$ is defined over the half interval $[0, \pi]$ as

$$
f(x)=x+2
$$

If $f(x)$ is even, sketch the periodic extension of period 2π of f and find its Fourier series.
You may use the fact that, if n is a non-zero integer then

$$
\int_{0}^{\pi} x \cos n x d x=\frac{1}{n^{2}}(\cos n \pi-1)
$$

6. (a) The response $y(t)$ at time t of a linear system with input $u(t)$ satisfies the equation

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=2 \frac{d u}{d t}+6 u
$$

Assuming that all initial conditions are zero (i.e. $y, \frac{d y}{d t}, \frac{d^{2} y}{d t^{2}}, u$ and $\frac{d u}{d t}$ are all zero for $t<0$), show that the Laplace transform $\bar{y}(p)$ of y and $\bar{u}(p)$ of u are related by

$$
\bar{y}(p)=\frac{2 p+6}{p^{2}+2 p+5} \bar{u}(p)
$$

[You may quote standard results regarding the Laplace transform of the derivatives of a function. If required in this or any other part of question 6 , you may also quote and use the shift theorem and the fact that the Laplace transforms of $e^{a t}, \sin (a t)$ and $\cos (a t)$ where a is a real number are given by $1 /(p-a), a /\left(p^{2}+a^{2}\right)$ and $p /\left(p^{2}+a^{2}\right)$ respectively.]

Hence, find the response $y(t)$ for $t>0$ to the following inputs $u(t)$:

$$
\begin{align*}
& u(t)=e^{-3 t} \tag{i}\\
& u(t)=\delta(t) \tag{ii}
\end{align*}
$$

(b) The response of a simple seismometer is determined by its transfer function which has two zeros at 0 and poles at -1 and -3 . Write down the transfer function (up to a constant multiple) and hence determine its response to a unit delta function impulse at $t=0$, assuming that all initial conditions are zero.

END

