MATH-106001

Only approved basic scientific calculators may be used.

This question paper consists of 3 printed pages, each of which is identified by the reference MATH–1060 $\,$

© UNIVERSITY OF LEEDS

Examination for the Module MATH-1060 (June 2006)

Introductory Linear Algebra

Time allowed : 2 hours

Do not answer more than four questions. All questions carry equal marks.

1. (a) For a system of equations:

$$x - 2y + 3z = 1$$
$$2x + ky + 6z = 6$$
$$-x + 3y + (k - 3)z = 0.$$

Find the values of k for which the system (i) has no solutions; (ii) has a unique solution; (iii) has infinitely many solutions. In the case (iii) write down the general solution to the system.

(b) (i) Evaluate the determinant

(ii) Find a value of x for which the determinant

$$\begin{vmatrix} 3 & 3+x & 1 \\ 1 & 2 & 3 \\ x+2 & 1 & 2+x \end{vmatrix}$$
 is equal to 0.

(In all cases show your working. Merely writing down the answers will gain you no marks.)

(c) Give a specific example of a 2×2 matrix A such that det(2A) = 2 det A.

2. (a) Let
$$A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 5 & 6 \\ 3 & 4 & 7 & 8 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$, $D = \begin{pmatrix} 9 & 6 & 3 \\ 8 & 5 & 2 \\ 7 & 4 & 1 \end{pmatrix}$.

(i) State which of the following exists, evaluating those which do: AB, BA, AC, CA, AB - CA.

(ii) Show that $CD \neq DC$.

(b) Given that x and y are real numbers with x > y, find the unique matrix A of the form $\begin{pmatrix} x & 1 \\ 2 & y \end{pmatrix}$ which satisfies the equation

$$A^2 + 5A = -4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

(c) Let
$$H = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 3 & 4 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $\mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{y} = \begin{pmatrix} 9 \\ -11 \\ 13 \end{pmatrix}$.

(i) By using elementary row operations, find the inverse of H, (show all steps in your working. No marks will be given for just writing down the answer.)

- (ii) Solve the system of equations $H\mathbf{x} = \mathbf{0}$ for \mathbf{x} .
- (iii) Solve the system of equations $H\mathbf{x} = \mathbf{y}$ for \mathbf{x} .
- 3. (a) Let V be the set of all pairs (x, y) where x, y are real numbers. Define a new operation ⊕ of "addition of pairs" by: (x, y) ⊕ (u, v) = (x + u, y + v) and a new "scalar multiplication" o, by: r ∘ (x, y) = (-x, y), for any real number r. Recalling that the vector space second multiplication axiom involves the equality λ ∘ (a ⊕ b) = λ ∘ a ⊕ λ ∘ b and that the third multiplication axiom involves the equality (λ + μ) ∘ a = λ ∘ a ⊕ μ ∘ a, show that the second multiplication axiom holds for all a, b ∈ V and r ∈ ℝ and show, by means of example, that the third multiplication axiom may fail in V.
 - (b) Let V be a vector space. Explain what is meant by a subspace of V.

For each of the following subsets W of \mathbb{R}^3 determine whether or not W is a subspace of \mathbb{R}^3 . (Here addition and scalar multiplication are as usual for \mathbb{R} . If the subset is *not* a subspace give a specific example to indicate why it is not a subspace.

(i) $W = \{(x, y, z) : -x + y + 2z = 2\};$ (ii) $W = \{(x, y, z) : x + 2y - z = 0\};$ (iii) $W = \{(x, y, z) : x + yz = 0\};$ (iv) $W = \{(x, y, z) : x - z \text{ is an integer }\};$ (v) $W = \{(u - v, v - w, w - v) : u, v, w \in \mathbb{R}\};$

(c) Let A, B be subspaces of the vector space V. Define A - B to be the subset of V comprising all elements of the form a - b where $a \in A$ and $b \in B$. Prove that A - B is a subspace of V.

4. (a) Let V be a vector space. Explain what it means to say that

- (i) the set $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_r$, of vectors in V are *linearly independent*;
- (ii) the set $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_s$, of vectors in V spans V;
- (iii) the set $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_t$, of vectors in V is a *basis* of V;

(iv) given that (i), (ii), and (iii) above are true statements in V, state any relationship you know of between the integers r, s, and t.

(b) Let
$$A = \begin{pmatrix} 1 & 2 & 1 & -1 \\ 2 & 3 & -2 & 3 \\ 3 & 4 & -5 & 7 \\ 1 & 1 & -3 & 4 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$, and $\mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$.

- (i) Find a basis for the row space of A;
- (ii) Find a basis for the solution space of $A\mathbf{x} = \mathbf{0}$.

(iii) Using (ii) find two solutions
$$\mathbf{x} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$
, of $A\mathbf{x} = \mathbf{0}$ for which $y = -1$.

- (c) Show that (3, 5, -1, 4) is not in the row space of A.
- 5. (a) Let λ be an eigenvalue for $n \times n$ matrix A and let \mathbf{x} be a corresponding eigenvector. Let $I_{n \times n}$ be the identity $n \times n$ matrix.

(i) Show that \mathbf{x} is an eigenvector of the matrix $A^2 + rA$ for any real number r. Find the corresponding eigenvalue.

(ii) If $A^3 = I_{n \times n}$ what are the possible eigenvalues of A?

(b) Find the eigenvalues and corresponding eigenvectors for the matrix $B = \begin{pmatrix} -3 & 15 \\ -2 & 8 \end{pmatrix}$. Hence find the element in the (1, 2) place of the 2 × 2 matrix B^4 .

(c) $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ are functions of t which are solutions of the system of differential equations

$$\dot{\mathbf{x}}_1 = -3\mathbf{x}_1 + 15\mathbf{x}_2$$
$$\dot{\mathbf{x}}_2 = -2\mathbf{x}_1 + 8\mathbf{x}_2$$

Express $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ in terms of the exponential function, given that $\mathbf{x}_1(0) = 1$ and $\mathbf{x}_2(0) = 0$.

END