(c) UNIVERSITY OF LEEDS

Examination for the Module MATH-1022
(May-June 2007)

Introductory Group Theory

Time allowed : 2 hours
Answer not more than four questions. All questions carry equal marks.

1. (a) Give the definition of a group.
(b) Give the definition of an abelian group.
(c) Let $G=\{3,6,9,12\}$ under multiplication mod 15 . Prove that G is a group.
(d) Prove that the set of non-zero real numbers under division is not a group.
(e) Prove that in every group, the identity element is unique.
2. Let G denote the group of symmetries (rotations and reflections) of a regular hexagon.
(a) List the elements of G, and find the order of each of the elements of G.
(b) Let $a \in G$ denote a rotation through $2 \pi / 6$ clockwise.

Find the subgroup H of G generated by a.
(c) Consider the group $\mathbb{Z}_{9}^{*}=\{1,2,4,5,7,8\}$ under $\times \bmod 9$.

Prove that $\{1,4,7\}$ is a subgroup of \mathbb{Z}_{9}^{*} and give an example of a non-empty subset of \mathbb{Z}_{9}^{*} which is not a subgroup of \mathbb{Z}_{9}^{*}.
3. (a) Explain what it means to say that two groups G_{1} and G_{2} are isomorphic.
(b) Let $G=\{e, a, b, c\}$ be a group in which the square of each element of G is the identity element, e. Using the Latin Square property of G, or otherwise, find the Cayley table of G.
(c) Prove that \mathbb{Z}_{7}^{*}, under $\times \bmod 7$, is cyclic, and hence show that it is isomorphic to the group \mathbb{Z}_{6} under $+\bmod 6$. Give an example of a group of order 6 not isomorphic to either of these groups.
4. Let G be a group and let H be a subgroup of G.
(a) Let $x, y \in G$. Prove that $H x=H y$ if and only if $x y^{-1} \in H$.
(b) Let $x \in G$. Prove that if $H x$ is a subgroup of G, then $x \in H$.
(c) Suppose that $G=\mathbb{Z}_{13} \backslash\{0\}$, under $\times \bmod 13$. Find all of the right cosets of the subgroup $H=\{1,3,9\}$ of G. Find two different elements, $x, y \in G$, such that $H x=H y$.
5. (a) Write the following product of permutations as a product of disjoint cycles:

$$
(1734)(354)(16)(237) .
$$

(b) Write the permutation given below (in two-line notation) as a product of disjoint cycles, and compute its order, stating carefully any results you use:

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 9 & 6 & 8 & 3 & 7 & 5 & 1 & 2
\end{array}\right) .
$$

(c) Give the definition of the alternating group of degree n and prove that it is a subgroup of the symmetric group of degree n.

END

