(c) UNIVERSITY OF LEEDS

Examination for the Module MATH-1022

(May-June 2006)

Introductory Group Theory

Time allowed : 2 hours
Answer not more than four questions. All questions carry equal marks.

1. (a) Determine which of the following are groups. For those which are, state the identity and inverses. For those which are not, give one axiom that fails.
(i) $\mathbb{N}=\{1,2,3, \ldots\}$ under + .
(ii) $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ under + .
(iii) $\{1,2,3\}$ under $\times \bmod 4$.
(iv) The set of $n \times n$ matrices with determinant 1 under matrix multiplication.
(b) Consider the group $\mathbb{Z}_{12}^{*}=\{1,5,7,11\}$ under $\times \bmod 12$. Prove that $\{1,11\}$ is a subgroup, but $\{1,7,11\}$ is not.
2. (a) Let G and H be groups. Define the direct product $G \times H$ and prove that it is a group.
(b) If G and H are finite groups, give a formula for the order $|G \times H|$ in terms of the orders $|G|$ and $|H|$.
(c) Determine which of the following groups are cyclic, giving reasons for your answers: $\mathbb{Z}_{2} \times \mathbb{Z}_{3}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}$, and $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$.
3. (a) Consider the group \mathbb{Z}_{4} under $+\bmod 4$. Write down an isomorphism between this group and the group with group table

	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b	b	c	e	a
c	c	e	a	b

(b) State Lagrange's Theorem and use it to prove that if g is an element of a finite group G, then $|g|$, the order of the element g, divides $|G|$, the order of the group G.
(c) Consider the group \mathbb{Z}_{12} under $+\bmod 12$. The subset $H=\{0,6\}$ is a subgroup. Determine the right cosets of H in \mathbb{Z}_{12}.
4. (a) Consider the cycle (163542) in S_{6}. Write it as a composition of transpositions.
(b) Let

$$
f=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 5 & 8 & 1 & 3 & 7 & 2 & 6
\end{array}\right) \text { and } g=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 8 & 6 & 2 & 3 & 1 & 7 & 4
\end{array}\right)
$$

be elements of the symmetric group S_{8}, given in two line notation. Write the composition $g f$ in two line notation. Write $f, g, g f$, and $(g f)^{2}$ as products of disjoint cycles.
(c) Determine which of the permutations $f, g, g f$, and $(g f)^{2}$ are even and which are odd.
5. (a) Let G and H be groups. Define what it means for a map $\theta: G \rightarrow H$ to be a homomorphism. Define the kernel of θ and prove that it is a normal subgroup of G.
(b) Determine which of the following are homomorphisms, giving reasons for your answers. For each homomorphism, determine the kernel.
(i) $\theta(x)=x^{2}$ from $\{x \in \mathbb{R} \mid x \neq 0\}$ under \times to itself.
(ii) $\theta(x)=x+x$ from $\{x \in \mathbb{R} \mid x \neq 0\}$ under \times to itself.
(iii) $\theta(x)=x+x$ from \mathbb{R} under + to itself.
(iv) $\theta(x)=x+x$ from \mathbb{Z}_{12} under $+\bmod 12$ to itself.

END

