MATH-102201

This question paper consists of 2 printed pages, each of which is identified by the reference MATH–1022

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-1022 (May-June 2006)

Introductory Group Theory

Time allowed : 2 hours

Answer not more than **four** questions. All questions carry equal marks.

- 1. (a) Determine which of the following are groups. For those which are, state the identity and inverses. For those which are not, give one axiom that fails.
 - (i) $\mathbb{N} = \{1, 2, 3, \ldots\}$ under +.
 - (ii) $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ under +.
 - (iii) $\{1, 2, 3\}$ under $\times \mod 4$.
 - (iv) The set of $n \times n$ matrices with determinant 1 under matrix multiplication.

(b) Consider the group $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$ under $\times \mod 12$. Prove that $\{1, 11\}$ is a subgroup, but $\{1, 7, 11\}$ is not.

2. (a) Let G and H be groups. Define the *direct product* $G \times H$ and prove that it is a group.

(b) If G and H are finite groups, give a formula for the order $|G \times H|$ in terms of the orders |G| and |H|.

(c) Determine which of the following groups are cyclic, giving reasons for your answers: $\mathbb{Z}_2 \times \mathbb{Z}_3$, $\mathbb{Z}_2 \times \mathbb{Z}_4$, and $\mathbb{Z}_2 \times \mathbb{Z}_5$.

3. (a) Consider the group \mathbb{Z}_4 under + mod 4. Write down an isomorphism between this group and the group with group table

	e	a	b	c
e	e	a	b	С
a	a	b	С	e
b	b	c	e	a
c	c	e	a	b

(b) State Lagrange's Theorem and use it to prove that if g is an element of a finite group G, then |g|, the order of the element g, divides |G|, the order of the group G.

(c) Consider the group \mathbb{Z}_{12} under $+ \mod 12$. The subset $H = \{0, 6\}$ is a subgroup. Determine the right cosets of H in \mathbb{Z}_{12} .

- 4. (a) Consider the cycle $(1 \ 6 \ 3 \ 5 \ 4 \ 2)$ in S_6 . Write it as a composition of transpositions.
 - (b) Let

be elements of the symmetric group S_8 , given in two line notation. Write the composition gf in two line notation. Write f, g, gf, and $(gf)^2$ as products of disjoint cycles.

- (c) Determine which of the permutations f, g, gf, and $(gf)^2$ are even and which are odd.
- 5. (a) Let G and H be groups. Define what it means for a map $\theta : G \to H$ to be a homomorphism. Define the kernel of θ and prove that it is a normal subgroup of G.

(b) Determine which of the following are homomorphisms, giving reasons for your answers. For each homomorphism, determine the kernel.

- (i) $\theta(x) = x^2$ from $\{x \in \mathbb{R} \mid x \neq 0\}$ under \times to itself.
- (ii) $\theta(x) = x + x$ from $\{x \in \mathbb{R} \mid x \neq 0\}$ under \times to itself.
- (iii) $\theta(x) = x + x$ from \mathbb{R} under + to itself.
- (iv) $\theta(x) = x + x$ from \mathbb{Z}_{12} under $+ \mod 12$ to itself.

END