c UNIVERSITY OF LEEDS

Examination for the Module MATH-0370
(May/June 2007)

Introduction to Applied Mathematics 2

Time allowed: 2 hours

Attempt all questions. Marks for each question are given in the right-hand margin. There are 80 marks available.

Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$ unless stated otherwise. State clearly any formula you use, and your reason for using it.

1. A particle moves such that its position $\underline{r}(t)$ is

$$
\underline{r}(t)=2 \cos t \underline{i}+3 t \underline{j}-t^{4} \underline{k} .
$$

Find the particle's velocity, speed and acceleration. Is there a time at which the particle is at rest?
2. A block of mass 2 kg is subject to a force

$$
\underline{F}(t)=4 \cos 2 t \underline{i}+6 \underline{k} .
$$

At time $t=0$, the particle is at the origin and is moving with speed $2 \underline{j}-4 \underline{k}$. Find the position of the particle $\underline{r}(t)$.
3. An escalator is broken and therefore stationary. A person can walk up the stationary escalator in 90 s . Once the escalator is repaired, the person would be carried to the top in 60 s (without walking). How long would it take to reach the top if the person walked up the moving escalator?
4. The brakes on a bus are able to decelerate the bus at a rate of $4 \mathrm{~m} / \mathrm{s}^{2}$. The bus is approaching a bus-stop at $20 \mathrm{~m} / \mathrm{s}$.
(a) How far away from the bus-stop must the driver apply the brakes?
(b) If the driver applies the brakes 1 s late, by what distance does the bus oveshoot the bus-stop?
(c) How fast is the bus moving when it passes the bus-stop?
5. A locomotive of mass 50 tonnes is pulling two carriages, each of mass 10 tonnes, with an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$. Each carriage is subject to 2 kN of friction. Draw a diagram that clearly indicates all the forces acting on the locomotive, the first carriage and the second carriage. Explain carefully how you calculate the values of all the forces.
[8 marks]
6. A stone is launched in a catapult from a cliff top 100 m above the sea. The initial speed of the stone is $50 \mathrm{~m} / \mathrm{s}$. Suppose that it is launched with an angle $\alpha=30^{\circ}$ above the horizontal. Let x be the horizontal distance travelled, and let y be the vertical distance above the sea.
(a) Calculate $x(t)$ and $y(t)$ (stating clearly the origin of your coordinate system), and find a relationship between x and y that does not involve the time t.
(b) Calculate the distance D from the base of the cliff where the stone falls into the sea.
[9 marks]
7. A block of mass m is on a table and is connected to a 2 kg weight hanging over the edge of a table by a light inextensible string. The block slides across the rough table with acceleration $2 \mathrm{~m} / \mathrm{s}^{2}$, and the coefficient of friction between the block and the table is $\mu=0.2$. Calculate m and find the tension in the string.
[7 marks]
8. A block of mass 20 kg is sliding down a rough slope at a constant speed. The slope is inclined at an angle of 30° to the horizontal. Find all forces acting on the block, and the coefficient of friction.
[7 marks]
9. A stone A of mass 2 kg is sliding on a smooth surface at $6 \mathrm{~m} / \mathrm{s}$. It strikes a stationary stone B of mass 4 kg . The coefficient of restitution of the collision is $e=0.5$. Calculate the speeds and directions of motion of the two stones after the collision.
[7 marks]
10. On the planet Zorg, the value of the gravitational acceleration is $g=16 \mathrm{~m} / \mathrm{s}^{2}$. A ball of mass 0.5 kg is dropped onto the horizontal ground from a height of 2 m . The coefficient of restitution is $e=0.8$. Calculate
(a) the total mechanical energy at the instant the ball is released;
(b) the speed with which the ball strikes the ground;
(c) the total mechanical energy after the bounce;
(d) the height to which the ball rises after the bounce.
11. The coefficient of friction between the road and the tyres of a motorbike is 0.2 . At what speed is it safe to drive round a corner of radius 50 m if the road is horizontal? [5 marks]

END

