MATH021201
This question paper consists of 5 printed pages, each of which is identified by the reference MATH-0212/0222
c UNIVERSITY OF LEEDS
Examination for the Modules MATH-0212/0222
(May 1999)

ELEMENTARY INTEGRAL CALCULUS
 Versions 1, 2

Time allowed : 2 hours

Attempt all the questions in Section A and three questions from Section B.
All questions in the same Section carry equal marks.
Only approved basic scientific calculators may be used.
A list of formulas which may be quoted is given at the end of the paper.

SECTION A

A1. Find $\int 4 x^{4} d x$.
A2. Find $\int 5 x^{-7} d x$.
A3. Find $\int x^{4 / 3} d x$.
A4. Find $\int\left(3 \sin \theta-4(\sec \theta)^{2}\right) d \theta$.
A5. Find $\int e^{3 t} d t$.
A6. Evaluate $\int_{0}^{\pi / 6} \cos 3 u d u$.
A7. Evaluate $\int_{-5}^{-2} \frac{1}{x} d x$ (to three decimal places).
A8. Find $\int \frac{1}{x-2} d x$.
A9. Find $\int \frac{1}{(u-4)^{2}} d u$.
A10. Find $\int \frac{2}{z^{2}+1} d z$.

A11. Find the area between the graph of $y=\cos x$ and the x-axis for x between 0 and $\pi / 2$.
A12. Factorise $x^{2}-7 x-18$.
A13. Find the solutions of the equation $8 x^{2}+4 x=0$.
A14. Find numbers a and b such that $x^{2}+10 x+16=(x+a)^{2}-b^{2}$.
A15. Find the centre and radius of the circle whose equation is $x^{2}+y^{2}+6 x-4 y-3=0$.
A16. Find the solutions (to three decimal places) of the equation $2 x^{2}+5 x-1=0$.
A17. What is the coefficient of $x^{2} y^{2}$ in $(x+y)^{4}$?
A18. Find the quotient and the remainder when $x^{3}+3$ is divided by $x^{2}-2$.
A19. Find numbers A and B such that $\frac{x-4}{x(x-2)}=\frac{A}{x}+\frac{B}{x-2}$.
A20. Find the area (to one decimal place) of the triangle $A B C$ in which $A B=7 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$.

SECTION B

B1. (a) Find $\int \frac{4}{4 x-3} d x$.
(b) Find numbers A and B such that $\frac{14 x-5}{(x+2)(4 x-3)}=\frac{A}{x+2}+\frac{B}{4 x-3}$. Hence find $\int \frac{14 x-5}{(x+2)(4 x-3)} d x$.
(c) Use the substitution $u=x^{4}+2$ to evaluate $\int_{0}^{1} \frac{x^{3}}{\left(x^{4}+2\right)^{2}} d x$.
(d) Use the method of integration by parts to find $\int x \sin 2 x d x$.

B2. (a) In the triangle $X Y Z, Y Z=14 \mathrm{~cm}, \angle X Z Y=53^{\circ}$ and $\angle Y X Z=26^{\circ}$. Find the length of $X Z$ and the area of the triangle (to two decimal places).
(b) In the quadrilateral $P Q R S, P Q=3 \mathrm{~cm}, Q R=6 \mathrm{~cm}, R S=5 \mathrm{~cm}, P S=4 \mathrm{~cm}$ and $\angle P S R$ is a right angle. Find the length of $P R$, the angle $P Q R$ and the area of the quadrilateral (to two decimal places).

B3. (a) Find the coefficient of $x^{12} y^{4}$ in $(x+y)^{16}$. Hence find the coefficient of x^{12} in $(x+3)^{16}$, and the coefficient of x^{12} in $(3 x-1)^{16}$.
(b) Find the quotient and the remainder when $x^{5}+3 x^{4}+4 x^{3}+2 x-1$ is divided by $x^{3}+2 x^{2}-1$.
(c) Find numbers A, B, C such that

$$
\frac{4 x^{2}-22 x+22}{(x+1)(x-3)^{2}}=\frac{A}{x+1}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}
$$

B4. (a) Find the area between the graph of $y=x^{2}+1$ and the x-axis for x between -2 and 2 .
(b) By rotating the line $y=4 x$ about the x-axis, find the volume of a cone which has height 2 cm and circular base with radius 8 cm .
(c) Find the area of the region between the graph of $y=\frac{1}{\sqrt{x}}$ and the x-axis for x between 1 and 9. Find the volume obtained by rotating this region about the x-axis. (Give the volume to one decimal place.)

END

Elementary Differential and Integral Calculus FORMULA SHEET

Exponents

$$
x^{a} \cdot x^{b}=x^{a+b}, \quad a^{x} \cdot b^{x}=(a b)^{x}, \quad\left(x^{a}\right)^{b}=x^{a b}, \quad x^{0}=1 .
$$

Logarithms

$\log x y=\log x+\log y, \quad \log x^{a}=a \log x, \quad \log 1=0, \quad e^{\log x}=x, \quad \log e^{y}=y, \quad a^{x}=e^{x \log a}$.

Trigonometry

$$
\cos 0=\sin \frac{1}{2} \pi=1, \quad \sin 0=\cos \frac{1}{2} \pi=0
$$

$$
\cos ^{2} \theta+\sin ^{2} \theta=1, \quad \cos (-\theta)=\cos \theta, \quad \sin (-\theta)=-\sin \theta,
$$

$$
\cos (A+B)=\cos A \cos B-\sin A \sin B, \quad \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

$$
\sin (A+B)=\sin A \cos B+\cos A \sin B, \quad \sin 2 \theta=2 \sin \theta \cos \theta
$$

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad 1+\tan ^{2} \theta=\sec ^{2} \theta
$$

Inverse Functions

$y=\sin ^{-1} x$ means $x=\sin y$ and $-\frac{1}{2} \pi \leqslant y \leqslant \frac{1}{2} \pi$.
$y=\cos ^{-1} x$ means $x=\cos y$ and $0 \leqslant y \leqslant \pi$.
$y=\tan ^{-1} x$ means $x=\tan y$ and $-\frac{1}{2} \pi<y<\frac{1}{2} \pi$.
$y=x^{1 / n}$ means $x=y^{n} . \quad y=\log x$ means $x=e^{y}$.

Alternative Notation

$\arcsin x=\sin ^{-1} x, \quad \arccos x=\cos ^{-1} x, \quad \arctan x=\tan ^{-1} x, \quad \log _{e} x=\log x$.
Note: $\quad \sin ^{-1} x \neq(\sin x)^{-1}, \quad \cos ^{-1} x \neq(\cos x)^{-1}, \quad \tan ^{-1} x \neq(\tan x)^{-1}$.
However: $\sin ^{2} x=(\sin x)^{2}, \quad \cos ^{2} x=(\cos x)^{2}, \quad \tan ^{2} x=(\tan x)^{2}$.

Lines

The line $y=m x+c$ has slope m.
The line through (x_{1}, y_{1}) with slope m has equation $y-y_{1}=m\left(x-x_{1}\right)$.
The line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ has slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ and equation $\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
The line $y=m x+c$ is perpendicular to the line $y=m^{\prime} x+c^{\prime}$ if $m m^{\prime}=-1$.

Circles

The distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$.
The circle with centre (a, b) and radius r is given by $(x-a)^{2}+(y-b)^{2}=r^{2}$.

Triangles

In a triangle $A B C$,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} ; \quad a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

Pascal's Triangle

$(x+y)^{2}=x^{2}+2 x y+y^{2}, \quad(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$ and so on.
The coefficients in $(x+y)^{n}$ form the nth row of Pascal's triangle:

and so on.

Quadratics

If $a x^{2}+b x+c=0$, with $a \neq 0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Calculus

If $y=u+v$ then $\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$. If $y=u v$ then $\frac{d y}{d x}=\frac{d u}{d x} v+u \frac{d v}{d x}$.
If $y=\frac{u}{v}$ then $\frac{d y}{d x}=\left\{\frac{d u}{d x} v-u \frac{d v}{d x}\right\} / v^{2}$.
$\int(u+v) d x=\int u d x+\int v d x . \quad \int u \frac{d v}{d x} d x=u v-\int \frac{d u}{d x} v d x$.
If y is a function of u where u is a function of x, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} \quad \text { and } \quad \int y \frac{d u}{d x} d x=\int y d u .
$$

Standard Derivatives and Integrals

If $y=x^{a}$ then $\frac{d y}{d x}=a x^{a-1} ;$ and $\int x^{a} d x=\frac{x^{a+1}}{a+1}+$ constant $\quad(a \neq-1)$.
If $y=\sin x$ then $\frac{d y}{d x}=\cos x$; and $\int \sin x d x=-\cos x+$ constant.
If $y=\cos x$ then $\frac{d y}{d x}=-\sin x ;$ and $\int \cos x d x=\sin x+$ constant.
If $y=\tan x$ then $\frac{d y}{d x}=\sec ^{2} x$; and $\int \tan x d x=\log |\sec x|+$ constant.
If $y=e^{x}$ then $\frac{d y}{d x}=e^{x}$; and $\int e^{x} d x=e^{x}+$ constant.
If $y=\log x$ then $\frac{d y}{d x}=\frac{1}{x}$; and $\int \frac{1}{x} d x=\log |x|+$ constant.
If $y=\sin ^{-1} x$ then $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}} ;$ and $\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+$ constant.
If $y=\cos ^{-1} x$ then $\frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}}$.
If $y=\tan ^{-1} x$ then $\frac{d y}{d x}=\frac{1}{1+x^{2}} ;$ and $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+$ constant.

