MATH021201

This question paper consists of 5 printed pages, each of which is identified by the reference MATH–0212/0222

© UNIVERSITY OF LEEDS

Examination for the Modules MATH-0212/0222

(May 1999)

ELEMENTARY INTEGRAL CALCULUS Versions 1, 2

Time allowed : 2 hours

Attempt **all** the questions in Section A and **three** questions from Section B. All questions in the same Section carry equal marks. Only approved basic scientific calculators may be used. A list of formulas which may be quoted is given at the end of the paper.

SECTION A

A1. Find $\int 4x^4 dx$. A2. Find $\int 5x^{-7} dx$. A3. Find $\int x^{4/3} dx$. A4. Find $\int (3\sin\theta - 4(\sec\theta)^2) d\theta$. A5. Find $\int e^{3t} dt$. A6. Evaluate $\int_0^{\pi/6} \cos 3u \, du$. A7. Evaluate $\int_{-5}^{-2} \frac{1}{x} dx$ (to three decimal places). A8. Find $\int \frac{1}{x-2} dx$. A9. Find $\int \frac{1}{(u-4)^2} du$. A10. Find $\int \frac{2}{z^2+1} dz$.

- A11. Find the area between the graph of $y = \cos x$ and the x-axis for x between 0 and $\pi/2$.
- **A12.** Factorise $x^2 7x 18$.
- A13. Find the solutions of the equation $8x^2 + 4x = 0$.
- **A14.** Find numbers *a* and *b* such that $x^2 + 10x + 16 = (x + a)^2 b^2$.
- A15. Find the centre and radius of the circle whose equation is $x^2 + y^2 + 6x 4y 3 = 0$.
- A16. Find the solutions (to three decimal places) of the equation $2x^2 + 5x 1 = 0$.
- A17. What is the coefficient of x^2y^2 in $(x+y)^4$?
- A18. Find the quotient and the remainder when $x^3 + 3$ is divided by $x^2 2$.
- A19. Find numbers A and B such that $\frac{x-4}{x(x-2)} = \frac{A}{x} + \frac{B}{x-2}$.
- **A20.** Find the area (to one decimal place) of the triangle ABC in which AB = 7cm, BC = 6cm and $\angle ABC = 60^{\circ}$.

SECTION B

- **B1. (a)** Find $\int \frac{4}{4x-3} dx$.
 - (b) Find numbers A and B such that $\frac{14x-5}{(x+2)(4x-3)} = \frac{A}{x+2} + \frac{B}{4x-3}$. Hence find $\int \frac{14x-5}{(x+2)(4x-3)} dx$.
 - (c) Use the substitution $u = x^4 + 2$ to evaluate $\int_0^1 \frac{x^3}{(x^4 + 2)^2} dx$.
 - (d) Use the method of integration by parts to find $\int x \sin 2x \, dx$.
- **B2.** (a) In the triangle XYZ, YZ = 14cm, $\angle XZY = 53^{\circ}$ and $\angle YXZ = 26^{\circ}$. Find the length of XZ and the area of the triangle (to two decimal places).

(b) In the quadrilateral PQRS, PQ = 3cm, QR = 6cm, RS = 5cm, PS = 4cm and $\angle PSR$ is a right angle. Find the length of PR, the angle PQR and the area of the quadrilateral (to two decimal places).

B3. (a) Find the coefficient of $x^{12}y^4$ in $(x+y)^{16}$. Hence find the coefficient of x^{12} in $(x+3)^{16}$, and the coefficient of x^{12} in $(3x-1)^{16}$.

(b) Find the quotient and the remainder when $x^5 + 3x^4 + 4x^3 + 2x - 1$ is divided by $x^3 + 2x^2 - 1$.

(c) Find numbers A, B, C such that

$$\frac{4x^2 - 22x + 22}{(x+1)(x-3)^2} = \frac{A}{x+1} + \frac{B}{x-3} + \frac{C}{(x-3)^2}.$$

B4. (a) Find the area between the graph of $y = x^2 + 1$ and the x-axis for x between -2 and 2.

(b) By rotating the line y = 4x about the x-axis, find the volume of a cone which has height 2cm and circular base with radius 8cm.

(c) Find the area of the region between the graph of $y = \frac{1}{\sqrt{x}}$ and the *x*-axis for *x* between 1 and 9. Find the volume obtained by rotating this region about the *x*-axis. (Give the volume to one decimal place.)

END

Elementary Differential and Integral Calculus FORMULA SHEET

Exponents

$$x^a \cdot x^b = x^{a+b}, \quad a^x \cdot b^x = (ab)^x, \quad (x^a)^b = x^{ab}, \quad x^0 = 1.$$

Logarithms

 $\log xy = \log x + \log y$, $\log x^a = a \log x$, $\log 1 = 0$, $e^{\log x} = x$, $\log e^y = y$, $a^x = e^{x \log a}$.

Trigonometry

 $\begin{aligned} \cos 0 &= \sin \frac{1}{2}\pi = 1, & \sin 0 = \cos \frac{1}{2}\pi = 0, \\ \cos^2 \theta + \sin^2 \theta &= 1, & \cos(-\theta) = \cos \theta, & \sin(-\theta) = -\sin \theta, \\ \cos(A+B) &= \cos A \cos B - \sin A \sin B, & \cos 2\theta = \cos^2 \theta - \sin^2 \theta, \\ \sin(A+B) &= \sin A \cos B + \cos A \sin B, & \sin 2\theta = 2\sin \theta \cos \theta, \\ \tan \theta &= \frac{\sin \theta}{\cos \theta}, & \sec \theta = \frac{1}{\cos \theta}, & 1 + \tan^2 \theta = \sec^2 \theta. \end{aligned}$

Inverse Functions

 $y = \sin^{-1} x \text{ means } x = \sin y \text{ and } -\frac{1}{2}\pi \leqslant y \leqslant \frac{1}{2}\pi.$ $y = \cos^{-1} x \text{ means } x = \cos y \text{ and } 0 \leqslant y \leqslant \pi.$ $y = \tan^{-1} x \text{ means } x = \tan y \text{ and } -\frac{1}{2}\pi < y < \frac{1}{2}\pi.$ $y = x^{1/n} \text{ means } x = y^n.$ $y = \log x \text{ means } x = e^y.$

Alternative Notation

 $\begin{aligned} & \arcsin x = \sin^{-1} x, \quad \arccos x = \cos^{-1} x, \quad \arctan x = \tan^{-1} x, \quad \log_e x = \log x. \\ & \text{Note:} \quad \sin^{-1} x \neq (\sin x)^{-1}, \quad \cos^{-1} x \neq (\cos x)^{-1}, \quad \tan^{-1} x \neq (\tan x)^{-1}. \\ & \text{However:} \quad \sin^2 x = (\sin x)^2, \quad \cos^2 x = (\cos x)^2, \quad \tan^2 x = (\tan x)^2. \end{aligned}$

Lines

The line y = mx + c has slope m.

The line through (x_1, y_1) with slope m has equation $y - y_1 = m(x - x_1)$. The line through (x_1, y_1) and (x_2, y_2) has slope $m = \frac{y_2 - y_1}{x_2 - x_1}$ and equation $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$.

The line y = mx + c is perpendicular to the line y = m'x + c' if mm' = -1.

Circles

The distance between (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$. The circle with centre (a, b) and radius r is given by $(x - a)^2 + (y - b)^2 = r^2$.

Triangles

In a triangle ABC,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C};$$
 $a^2 = b^2 + c^2 - 2bc \cos A.$

Pascal's Triangle

 $(x+y)^2 = x^2 + 2xy + y^2$, $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$ and so on. The coefficients in $(x+y)^n$ form the *n*th row of Pascal's triangle:

Quadratics

If $ax^{2} + bx + c = 0$, with $a \neq 0$, then $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$.

Calculus

If
$$y = u + v$$
 then $\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$. If $y = uv$ then $\frac{dy}{dx} = \frac{du}{dx}v + u\frac{dv}{dx}$.
If $y = \frac{u}{v}$ then $\frac{dy}{dx} = \left\{\frac{du}{dx}v - u\frac{dv}{dx}\right\} / v^2$.
 $\int (u+v) dx = \int u \, dx + \int v \, dx$. $\int u \frac{dv}{dx} \, dx = uv - \int \frac{du}{dx}v \, dx$.
If y is a function of u where u is a function of x , then

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 and $\int y\frac{du}{dx}dx = \int y\,du$.

Standard Derivatives and Integrals

If
$$y = x^a$$
 then $\frac{dy}{dx} = a x^{a-1}$; and $\int x^a dx = \frac{x^{a+1}}{a+1} + \text{ constant}$ $(a \neq -1)$.
If $y = \sin x$ then $\frac{dy}{dx} = \cos x$; and $\int \sin x \, dx = -\cos x + \text{ constant}$.
If $y = \cos x$ then $\frac{dy}{dx} = -\sin x$; and $\int \cos x \, dx = \sin x + \text{ constant}$.
If $y = \tan x$ then $\frac{dy}{dx} = \sec^2 x$; and $\int \tan x \, dx = \log |\sec x| + \text{ constant}$.
If $y = e^x$ then $\frac{dy}{dx} = e^x$; and $\int e^x \, dx = e^x + \text{ constant}$.
If $y = \log x$ then $\frac{dy}{dx} = \frac{1}{x}$; and $\int \frac{1}{x} \, dx = \log |x| + \text{ constant}$.
If $y = \sin^{-1} x$ then $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$; and $\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + \text{ constant}$.
If $y = \cos^{-1} x$ then $\frac{dy}{dx} = \frac{-1}{\sqrt{1-x^2}}$.
If $y = \tan^{-1} x$ then $\frac{dy}{dx} = \frac{1}{1+x^2}$; and $\int \frac{1}{1+x^2} \, dx = \tan^{-1} x + \text{ constant}$.