MATH-013101

This question paper consists of 3 printed pages, each of which is identified by the reference MATH-013101

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-0131

(January 2007)

Elementary Differential Calculus (Version 3)

Time allowed: 2 hours

Attempt all questions in Section A and any *three* questions from Section B.

Each question in Section A carries 2 marks, each question in section B carries 20 marks. You must show your working in answer to all questions. A formula sheet is supplied with this paper.

SECTION A

Attempt **all** the questions in Section A

- A1. Expand (x+2)(3-5x).
- **A2.** Evaluate $16^{-3/4}$.

A3. Evaluate
$$3x^{3/2}y^2x^{-2}y^{-3}$$
 when $x = \frac{1}{4}$ and $y = 7$.

- A4. Find $\log_{27} 9$.
- A5. Factorise $x^2 + x 12$.
- A6. Solve the equation $x^2 + 3x 10 = 0$.
- A7. Find the equation of the straight line through the point (1, 2) which is perpendicular to the line x 2y + 3 = 0.
- **A8.** What is the distance between the points (1, -1) and (-2, 3)?
- A9. The angle θ lies between 0 and $\pi/2$ and $\sin \theta = \frac{1}{3}$. Find $\cos \theta$ and $\tan \theta$ leaving your answers as exact expressions involving square roots.
- A10. Find the equation of the circle with centre (-1, 1) and radius 2.

A11. Find
$$\frac{dy}{dx}$$
 when $y = x^{3/4}$.
A12. Find $\frac{dy}{dx}$ when $y = 2x^3 + x^2 + 8$.
A13. Find $\frac{dy}{dx}$ when $y = \sqrt[3]{x^2 + 3}$.
A14. Find $\frac{dy}{dx}$ when $y = \sin x^3$.
A15. Find $\frac{dy}{dx}$ when $y = \sin x^3$.
A16. Find $\frac{dy}{dx}$ when $y = e^{3x} \cos x^2$.
A17. Find $\frac{dy}{dx}$ when $y = \ln(\tan x + 6)$.
A18. Find $\frac{d^2y}{dx^2}$ when $y = 5x^2 + 7x^3$.

- A19. Find the tangent to the curve $y = x^2 + 2x 3$ at the point (-1, -4).
- A20. Without using a calculator, find an exact expression for $\sin(5\pi/6)$.

SECTION B

Attempt **three** questions in Section B

- **B1.** (a) Sketch the graph of $y = \cos \theta$, for θ in the range $-2\pi \le \theta \le 2\pi$ labelling the values of θ where the graph crosses the horizontal axis and where y has minimum and maximal values.
 - (b) Find all values of θ (in radians) between -2π and 2π , such that $\cos \theta = \frac{\sqrt{3}}{2}$.

(c) Using the formula for $\cos(A+B)$ from the formula sheet, show that $\cos(\theta - \frac{\pi}{2}) = \sin \theta$. Use the result from the previous part of the question to find all values of θ between $-\pi$ and π such that $\sin \theta = \frac{\sqrt{3}}{2}$.

- **B2.** (a) The points A and B have coordinates (2,3) and (-1,4) correspondingly. Find:
 - (i) the equation of the line AB;
 - (ii) the equation of the line through the origin perpendicular to AB;
 - (iii) the point where the above two lines meet;

continued ...

(iv) the distance from the origin to the line AB.

- (b) A circle has centre at the point C = (4, 2) and passes through the point P(1, 6). Find:
 - (i) the radius of the circle;
 - (ii) the equation of the circle;
 - (iii) the gradient of the line CP;
 - (iv) the equation of the tangent to the circle at P.

B3. Differentiate each of the following functions with respect to x.

(i)
$$y = (x^2 - 2x)^3 + \sqrt[3]{x^4 - 1}$$

(ii) $y = (x^4 + e^x) \sin(2x - 1);$
(iii) $y = \frac{x^2 + 6}{x(\ln x + 4)};$
(iv) $y = \arccos(e^x);$
(v) $y = (2^x + e)^4.$

- **B4.** (a) Find the stationary point of the function given by $y = 2x^3 3x^2 12x + 6$ and determine whether they are (local) maximum or minimum points.
 - (b) Find the maximum and minimum values of $7 2x + x^2$ for x between 0 and 3.
 - (c) If y is given as a function of x by $2xy^2 + 3y = 2x + 1$, find $\frac{dy}{dx}$ in terms of x and y.

END