Elementary Differential Calculus (Version 3)

Time allowed: 2 hours

Attempt all questions in Section A and any three questions from Section B.
Each question in Section A carries 2 marks, each question in section B carries 20 marks. You must show your working in answer to all questions.

A formula sheet is supplied with this paper.

SECTION A

Attempt all the questions in Section A

A1. Expand $(x+2)(3-5 x)$.
A2. Evaluate $16^{-3 / 4}$.
A3. Evaluate $3 x^{3 / 2} y^{2} x^{-2} y^{-3}$ when $x=\frac{1}{4}$ and $y=7$.
A4. Find $\log _{27} 9$.
A5. Factorise $x^{2}+x-12$.
A6. Solve the equation $x^{2}+3 x-10=0$.
A7. Find the equation of the straight line through the point $(1,2)$ which is perpendicular to the line $x-2 y+3=0$.

A8. What is the distance between the points $(1,-1)$ and $(-2,3)$?
A9. The angle θ lies between 0 and $\pi / 2$ and $\sin \theta=\frac{1}{3}$. Find $\cos \theta$ and $\tan \theta$ leaving your answers as exact expressions involving square roots.

A10. Find the equation of the circle with centre $(-1,1)$ and radius 2 .

A11. Find $\frac{d y}{d x}$ when $y=x^{3 / 4}$.
A12. Find $\frac{d y}{d x}$ when $y=2 x^{3}+x^{2}+8$.
A13. Find $\frac{d y}{d x}$ when $y=\sqrt[3]{x^{2}+3}$.
A14. Find $\frac{d y}{d x}$ when $y=\sin x^{3}$.
A15. Find $\frac{d y}{d x}$ when $y=\frac{x^{3}+x}{7 x+2}$.
A16. Find $\frac{d y}{d x}$ when $y=e^{3 x} \cos x^{2}$.
A17. Find $\frac{d y}{d x}$ when $y=\ln (\tan x+6)$.
A18. Find $\frac{d^{2} y}{d x^{2}}$ when $y=5 x^{2}+7 x^{3}$.
A19. Find the tangent to the curve $y=x^{2}+2 x-3$ at the point $(-1,-4)$.
A20. Without using a calculator, find an exact expression for $\sin (5 \pi / 6)$.

SECTION B

Attempt three questions in Section B

B1. (a) Sketch the graph of $y=\cos \theta$, for θ in the range $-2 \pi \leq \theta \leq 2 \pi$ labelling the values of θ where the graph crosses the horizontal axis and where y has minimum and maximal values.
(b) Find all values of θ (in radians) between -2π and 2π, such that $\cos \theta=\frac{\sqrt{3}}{2}$.
(c) Using the formula for $\cos (A+B)$ from the formula sheet, show that $\cos \left(\theta-\frac{\pi}{2}\right)=\sin \theta$. Use the result from the previous part of the question to find all values of θ between $-\pi$ and π such that $\sin \theta=\frac{\sqrt{3}}{2}$.

B2. (a) The points A and B have coordinates $(2,3)$ and $(-1,4)$ correspondingly. Find:
(i) the equation of the line $A B$;
(ii) the equation of the line through the origin perpendicular to $A B$;
(iii) the point where the above two lines meet;
(iv) the distance from the origin to the line $A B$.
(b) A circle has centre at the point $C=(4,2)$ and passes through the point $P(1,6)$. Find:
(i) the radius of the circle;
(ii) the equation of the circle;
(iii) the gradient of the line $C P$;
(iv) the equation of the tangent to the circle at P.

B3. Differentiate each of the following functions with respect to x.

$$
\begin{aligned}
\text { (i) } y & =\left(x^{2}-2 x\right)^{3}+\sqrt[3]{x^{4}-1} ; \\
\text { (ii) } y & =\left(x^{4}+e^{x}\right) \sin (2 x-1) ; \\
\text { (iii) } y & =\frac{x^{2}+6}{x(\ln x+4)} \\
\text { (iv) } y & =\arccos \left(e^{x}\right) \\
\text { (v) } y & =\left(2^{x}+e\right)^{4}
\end{aligned}
$$

B4. (a) Find the stationary point of the function given by $y=2 x^{3}-3 x^{2}-12 x+6$ and determine whether they are (local) maximum or minimum points.
(b) Find the maximum and minimum values of $7-2 x+x^{2}$ for x between 0 and 3 .
(c) If y is given as a function of x by $2 x y^{2}+3 y=2 x+1$, find $\frac{d y}{d x}$ in terms of x and y.

END

