Only approved basic scientific calculators may be used.

MATH-013101

This question paper consists of 3 printed pages, each of which is identified by the reference MATH-0131, together with 2 pages of formula sheet.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-0131

(January 2003)

Elementary Differential Calculus: Version 3

Time allowed : 2 hours

Attempt all the questions in Section A and three questions from Section B.

Each question in Section A carries 2 marks, and each question in Section B carries 20 marks. You must show your working in answers to all questions. A formula sheet is supplied with this paper.

SECTION A Attempt all the questions in Section A.

- A1. Expand $(2x 5)^2$.
- **A2.** Evaluate $27^{-1/3}$.
- **A3.** Evaluate $\frac{2x^3y}{y^2z^4}$ when x = 4 and y = 3 and z = 2.
- **A4.** What is the value of $\log_2 \frac{1}{4}$?
- A5. Factorize $4x^2 9$.
- A6. Solve the equation $x^2 4x = 5$.
- A7. Find the equation of the straight line with gradient 2 passing through the point (1, 6).
- A8. What is the gradient of a line perpendicular to the line y = 8x 2?
- A9. The angle θ is acute and $\sin \theta = \frac{1}{4}$. Find the values of $\cos \theta$ and $\tan \theta$, leaving your answers as exact expressions involving square roots.

- A10. In the triangle ABC, the angle at A is 30° and the angle at B is 90° . If BC has length 4cm, what is the length of AC?
- **A11.** Without using a calculator, find exact expressions for $\sin \frac{\pi}{6}$ and $\cos \frac{\pi}{6}$.
- A12. Find all the exact values of θ between 0 and 2π radians which satisfy the equation $\cos \theta = \frac{1}{\sqrt{2}}$.
- **A13.** Find $\frac{dy}{dx}$ when $y = 3x^5$.
- **A14.** Find $\frac{dy}{dx}$ when $y = x^{1/2} + \frac{1}{x^{1/2}}$.
- **A15.** Find $\frac{dy}{dx}$ when $y = (2x + 1)^{12}$.
- **A16.** Find $\frac{dy}{dx}$ when $y = 2\cos x 7\sin x$.
- **A17.** Find $\frac{dy}{dx}$ when $y = e^{\tan x}$.
- A18. Find $\frac{dy}{dx}$ when $y = \ln(2x^2 + 1)$.
- **A19.** Find $\frac{d^2y}{dx^2}$ when $y = 2x^4 9x$.
- **A20.** Find the equation of the circle with centre (2,3) and radius 3.

SECTION B Attempt **three** questions from Section B.

B1. (a) Find the turning points of the curve $y = 2x^3 - 3x^2 + 1$, and classify them as local maxima or minima. Give a rough sketch of the curve. You must show all your working.

(b) Find the gradient of the curve $y = x^3 + 2 \ln x$ at the point where x = 1.

Find the equation of the tangent to the curve at this point.

B2. (a) The point P has coordinates (1, 4). Find

(i) the equation of the straight line through P with gradient 5;

(ii) the coordinates of the point of intersection, Q, of this line with the line whose equation is x + y = 11;

(iii) the distance PQ;

(iv) the equation of the line perpendicular to PQ that passes through the origin O.

(b) A circle has centre C with coordinates (3,0), and passes through the point A with coordinates (0,3). Find

- (i) the radius of the circle;
- (ii) the equation of the circle;
- (iii) the gradient of the line AC;
- (iv) the equation of the tangent to the circle at A.
- **B3.** (a) Sketch the graph of the function $\sin x$ in the range $0 \le x \le 2\pi$ (radians). For the same range of values of x sketch the graphs of $y = \sin 2x$ and $y = \sin \frac{x}{2}$. Label in radians the points at which the graphs cross the x-axis.

(b) Use the identity $\sin^2 x + \cos^2 x = 1$ to find all solutions of the equation $5\sin^2 x + \cos^2 x = 2$ in the range $0 \le x \le 2\pi$.

(c) The angle θ is acute and $\cos \theta = \frac{2}{5}$. Find (without a calculator) exact values of $\sin \theta$, $\tan \theta$, $\sin 2\theta$ and $\cos 2\theta$.

- **B4.** Differentiate each of the following functions with respect to x.
 - (a) $y = \sqrt{x^6 2x};$
 - (b) $y = e^{3x} \cos 2x;$
 - (c) $y = x \ln x x;$
 - (d) $y = \frac{x-7}{x^2+1};$
 - (e) $y = \arctan(x^3)$.

END