© UNIVERSITY OF LEEDS
Examination for the Module MATH-0131
(January 2003)

Elementary Differential Calculus: Version 3

Time allowed : 2 hours

Attempt all the questions in Section A and three questions from Section B.

Each question in Section A carries 2 marks, and each question in Section B carries 20 marks. You must show your working in answers to all questions. A formula sheet is supplied with this paper.

SECTION A

Attempt all the questions in Section A.

A1. Expand $(2 x-5)^{2}$.

A2. Evaluate $27^{-1 / 3}$.

A3. Evaluate $\frac{2 x^{3} y}{y^{2} z^{4}}$ when $x=4$ and $y=3$ and $z=2$.

A4. What is the value of $\log _{2} \frac{1}{4}$?

A5. Factorize $4 x^{2}-9$.

A6. Solve the equation $x^{2}-4 x=5$.

A7. Find the equation of the straight line with gradient 2 passing through the point $(1,6)$.

A8. What is the gradient of a line perpendicular to the line $y=8 x-2$?

A9. The angle θ is acute and $\sin \theta=\frac{1}{4}$. Find the values of $\cos \theta$ and $\tan \theta$, leaving your answers as exact expressions involving square roots.

A10. In the triangle ABC , the angle at A is 30° and the angle at B is 90°. If BC has length 4 cm , what is the length of AC ?

A11. Without using a calculator, find exact expressions for $\sin \frac{\pi}{6}$ and $\cos \frac{\pi}{6}$.

A12. Find all the exact values of θ between 0 and 2π radians which satisfy the equation $\cos \theta=\frac{1}{\sqrt{2}}$.

A13. Find $\frac{d y}{d x}$ when $y=3 x^{5}$.

A14. Find $\frac{d y}{d x}$ when $y=x^{1 / 2}+\frac{1}{x^{1 / 2}}$.

A15. Find $\frac{d y}{d x}$ when $y=(2 x+1)^{12}$.

A16. Find $\frac{d y}{d x}$ when $y=2 \cos x-7 \sin x$.

A17. Find $\frac{d y}{d x}$ when $y=e^{\tan x}$.

A18. Find $\frac{d y}{d x}$ when $y=\ln \left(2 x^{2}+1\right)$.

A19. Find $\frac{d^{2} y}{d x^{2}}$ when $y=2 x^{4}-9 x$.

A20. Find the equation of the circle with centre $(2,3)$ and radius 3 .

SECTION B
Attempt three questions from Section B.

B1. (a) Find the turning points of the curve $y=2 x^{3}-3 x^{2}+1$, and classify them as local maxima or minima. Give a rough sketch of the curve. You must show all your working.
(b) Find the gradient of the curve $y=x^{3}+2 \ln x$ at the point where $x=1$.

Find the equation of the tangent to the curve at this point.

B2. (a) The point P has coordinates (1,4). Find
(i) the equation of the straight line throught P with gradient 5;
(ii) the coordinates of the point of intersection, Q, of this line with the line whose equation is $x+y=11$;
(iii) the distance $P Q$;
(iv) the equation of the line perpendicular to $P Q$ that passes through the origin O.
(b) A circle has centre C with coordinates $(3,0)$, and passes through the point A with coordinates $(0,3)$. Find
(i) the radius of the circle;
(ii) the equation of the circle;
(iii) the gradient of the line $A C$;
(iv) the equation of the tangent to the circle at A.

B3. (a) Sketch the graph of the function $\sin x$ in the range $0 \leq x \leq 2 \pi$ (radians). For the same range of values of x sketch the graphs of $y=\sin 2 x$ and $y=\sin \frac{x}{2}$. Label in radians the points at which the graphs cross the x-axis.
(b) Use the identity $\sin ^{2} x+\cos ^{2} x=1$ to find all solutions of the equation $5 \sin ^{2} x+\cos ^{2} x=2 \quad$ in the range $0 \leq x \leq 2 \pi$.
(c) The angle θ is acute and $\cos \theta=\frac{2}{5}$. Find (without a calculator) exact values of $\sin \theta$, $\tan \theta, \sin 2 \theta$ and $\cos 2 \theta$.

B4. Differentiate each of the following functions with respect to x.
(a) $y=\sqrt{x^{6}-2 x}$;
(b) $y=e^{3 x} \cos 2 x$;
(c) $y=x \ln x-x$;
(d) $y=\frac{x-7}{x^{2}+1}$;
(e) $y=\arctan \left(x^{3}\right)$.

END

