© UNIVERSITY OF LEEDS

Examination for the Module MATH-0131
(January 2002)

Elementary Differential Calculus: Version 3

Time allowed : 2 hours

Attempt all the questions in Section A and three questions from Section B.

Each question in Section A carries 2 marks, and each question in Section B carries 20 marks. You must show your working in answers to all questions. A formula sheet is supplied with this paper.

SECTION A

Attempt all the questions in Section A.

A1. Expand $(x-4)(2 x+1)$.

A2. Evaluate $8^{-1 / 3}$.

A3. Evaluate $\frac{3 x^{2} y}{x^{1 / 2} y^{3}}$ when $x=4$ and $y=3$.

A4. What is the value of $\log _{3} 27$?

A5. Factorize $16 x^{2}-1$.

A6. Solve the equation $x^{2}+2 x=8$.

A7. Find the equation of the straight line with gradient 3 passing through the point $(3,2)$.

A8. Find the gradient of the line with equation $2 y-6 x+5=0$, and the coordinates of the point where it crosses the y-axis.

A9. The angle θ is acute and $\sin \theta=\frac{2}{3}$. Find the values of $\cos \theta$ and $\tan \theta$, leaving your answers as exact expressions involving square roots.

A10. Find the equation of the circle with centre $(2,1)$ and radius 2 .

A11. Find $\frac{d y}{d x}$ when $y=2 x^{7}$.

A12. Find $\frac{d y}{d x}$ when $y=x^{4}+\frac{1}{x^{4}}$.

A13. Find $\frac{d y}{d x}$ when $y=3 x^{2}-6 x+7$.

A14. Find $\frac{d y}{d x}$ when $y=(2 x+3)^{10}$.

A15. Find $\frac{d y}{d x}$ when $y=3 \cos x+2 \sin x$.

A16. Find $\frac{d y}{d x}$ when $y=e^{x^{2}}$.

A17. Find $\frac{d y}{d x}$ when $y=\ln \left(x^{2}+8\right)$.

A18. Find $\frac{d^{2} y}{d x^{2}}$ when $y=10 x^{3}+11 x$.

A19. Without using a calculator, find exact expressions for $\sin \frac{\pi}{4}$ and $\cos \frac{\pi}{4}$.

A20. Find all solutions to the equation $\cos \theta=\frac{1}{\sqrt{2}}$ with $0 \leq \theta \leq 2 \pi$.

SECTION B

Attempt three questions from Section B.

B1. (a) Find the turning points of the curve $y=x^{3}-3 x^{2}+4$, and classify them as local maxima or minima. Give a rough sketch of the curve. You must show all your working.
(b) Find the gradient of the curve $y=4 x+x^{-2}$ at the point where $x=1$.

Find the equation of the tangent to the curve at this point.

B2. (a) The points P, Q and R have coordinates $(1,3),(2,4)$ and $(-1,-1)$, respectively. Find
(i) the equation of the straight line $P Q$;
(ii) the coordinates of the midpoint of the line $P R$;
(iii) the gradient of the line $P R$;
(iv) the equation of the perpendicular bisector of the line $P R$;
(v) the coordinates of the point where the perpendicular bisector of $P R$ meets $P Q$.
(b) A circle has centre C with coordinates $(4,4)$, and passes through the point A with coordinates $(0,2)$. Find
(i) the radius of the circle;
(ii) the equation of the circle;
(iii) the gradient of the line $A C$;
(iv) the equation of the tangent to the circle at A.

B3. (a) Sketch the graph of the function $\sin 2 x$ in the range $0 \leq x \leq 2 \pi$ (radians), labelling the x-axis in multiples of $\pi / 4$.

Find all solutions to the equation $\sin 2 x=\frac{\sqrt{3}}{2}$ in the range $0 \leq x \leq 2 \pi$.
(b) Use the identity $\sin ^{2} x+\cos ^{2} x=1$ to find all solutions of the equation $3 \sin ^{2} x+\cos ^{2} x=1+\sin x \quad$ in the range $0 \leq x \leq 2 \pi$.
(c) In a triangle $A B C$, the angle B is a right angle, the hypoteneuse $A C$ is 10 cm , and the side $B C$ is 8 cm . The angle A is equal to θ. Find (without a calculator) exact values of $\sin \theta$, $\cos \theta, \sin 2 \theta$ and $\cos 2 \theta$.

B4. Differentiate each of the following functions with respect to x.
(a) $y=\left(x^{4}+2\right)^{3}+\left(x^{4}+2\right)^{-1}$;
(b) $y=\left(2 x^{2}-7 x\right) \sin x$;
(c) $y=e^{3 x} \cos 4 x$;
(d) $y=\frac{\ln x}{x}$;
(e) $y=\arcsin (\sqrt{x})$.

END

