© UNIVERSITY OF LEEDS
Examination for the Module MATH-0111
(January 2003)

Elementary Differential Calculus (Version 1)

Time allowed: 2 hours
Attempt all the questions in Section A and three questions from Section B.
Each question in Section A carries 2 marks, and each question in Section B carries 20 marks.
You must show your working in answers to all questions.
A formula sheet is supplied with this paper.

SECTION A

Attempt all the questions in Section A

A1. Expand $(2 x-3)(x+5)$.
A2. Evaluate (27) ${ }^{-2 / 3}$.
A3. Evaluate $2 a^{3} b a^{-1} b^{-1 / 2}$ when $a=5$ and $b=9$.
A4. Find $\log _{4} 32$.
A5. Factorise $x^{2}+3 x-10$.
A6. Solve the equation $x^{2}+5 x=0$.
A7. Find the equation of the straight line through the point $(-1,1)$ which is parallel to the line $2 x-3 y+1=0$.

A8. What is the distance between the points $(1,2)$ and $(-2,-2)$?
A9. The angle θ lies between 0 and $\pi / 2$, and $\cos \theta=2 / 5$. Find $\sin \theta$ and $\tan \theta$, leaving your answers as exect expressions involving square roots.

A10. Find the equation of the circle with centre $(3,0)$ and radius 4.
A11. Find $\frac{d y}{d x}$ when $y=x^{4 / 3}$.

A12. Find $\frac{d y}{d x}$ when $y=3 x^{2}+4 x+7$.
A13. Find $\frac{d y}{d x}$ when $y=\sqrt{3 x-1}$.
A14. Find $\frac{d y}{d x}$ when $y=\cos ^{4} x$.
A15. Find $\frac{d y}{d x}$ when $y=\frac{x+1}{x^{2}+1}$.
A16. Find $\frac{d y}{d x}$ when $y=e^{2 x} \sin x$.
A17. Find $\frac{d y}{d x}$ when $y=\ln \left(x^{3}+4\right)$.
A18. Find $\frac{d^{2} y}{d x^{2}}$ when $y=3 x^{4}-5 x^{2}$.
A19. Find the tangent to the curve $y=2 x^{2}-x+3$ at the point $(1,4)$.
A20. Without using a calculator, find an exact expression for $\cos (2 \pi / 3)$.

SECTION B

Attempt three questions in Section B

B1. (a) Sketch the graph of $y=\sin \theta$, for θ in the range $-2 \pi \leqslant \theta \leqslant 2 \pi$, labelling the values of θ where the graph crosses the horizontal axis and where y has minimum or maximum values.
(b) Find all values of θ (in radians) between -2π and 2π, such that $\sin \theta=-1 / 2$.
(c) Using the formula for $\sin (A+B)$ from the formula sheet, show that $\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta$. Use the results from the previous part of the question to find all values of θ between $-\pi$ and π such that $\cos \theta=-1 / 2$.

B2. (a) The points A, B have coordinates $(1,4)$ and $(3,3)$. Find
(i) the equation of the line $A B$;
(ii) the equation of the line through the origin perpendicular to $A B$;
(iii) the point where the above two lines meet;
(iv) the distance from the origin to the line $A B$.
(b) A circle has centre at the point $C=(2,3)$ and passes through the point $P=(4,0)$. Find
(i) the radius of the circle;
(ii) the equation of the circle;
(iii) the gradient of the line $C P$;
(iv) the equation of the tangent to the circle at P.

B3. Differentiate each of the following functions with respect to x.
(i) $y=\left(x^{3}-4\right)^{4}+\left(x^{3}-4\right)^{-1 / 2}$;
(ii) $y=\left(2 x^{2}+3 x\right) \tan x$;
(iii) $y=\frac{\ln x}{x(x+1)}$;
(iv) $y=\arcsin \left(x^{2}\right)$;
(v) $y=\left(e^{3 x}+2\right)^{7}$.

B4. (a) Find the stationary points of the function given by $y=x^{3}-3 x^{2}-9 x$ and determine whether they are (local) maximum or minimum points.
(b) Find the maximum and minimum values of $1+4 x-x^{2}$ for x between 0 and 5 .
(c) If y is given as a function of x by $x^{2} y+2 y^{3}=5 x-2$, find $\frac{d y}{d x}$ in terms of x and y.

Elementary Differential and Integral Calculus FORMULA SHEET

Exponents

$x^{a} \cdot x^{b}=x^{a+b}, \quad a^{x} \cdot b^{x}=(a b)^{x}, \quad\left(x^{a}\right)^{b}=x^{a b}, \quad x^{0}=1$.

Logarithms

$\ln x y=\ln x+\ln y, \quad \ln x^{a}=a \ln x, \quad \ln 1=0, \quad e^{\ln x}=x, \quad \ln e^{y}=y$, $a^{x}=e^{x \ln a}$.

Trigonometry

$\cos 0=\sin \frac{\pi}{2}=1, \quad \sin 0=\cos \frac{\pi}{2}=0$,
$\cos ^{2} \theta+\sin ^{2} \theta=1, \quad \cos (-\theta)=\cos \theta, \quad \sin (-\theta)=-\sin \theta$,
$\cos (A+B)=\cos A \cos B-\sin A \sin B, \quad \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$,
$\sin (A+B)=\sin A \cos B+\cos A \sin B, \quad \sin 2 \theta=2 \sin \theta \cos \theta$,
$\tan \theta=\frac{\sin \theta}{\cos \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad 1+\tan ^{2} \theta=\sec ^{2} \theta$.

Inverse Functions

$y=\sin ^{-1} x$ means $x=\sin y$ and $-\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2}$.
$y=\cos ^{-1} x$ means $x=\cos y$ and $0 \leqslant y \leqslant \pi$.
$y=\tan ^{-1} x$ means $x=\tan y$ and $-\frac{\pi}{2}<y<\frac{\pi}{2}$.
$y=x^{1 / n}$ means $x=y^{n} . \quad y=\ln x$ means $x=e^{y}$.

Alternative Notation

$\arcsin x=\sin ^{-1} x, \quad \arccos x=\cos ^{-1} x, \quad \arctan x=\tan ^{-1} x, \quad \log _{e} x=\ln x$.
Note: $\quad \sin ^{-1} x \neq(\sin x)^{-1}, \quad \cos ^{-1} x \neq(\cos x)^{-1}, \quad \tan ^{-1} x \neq(\tan x)^{-1}$.
However: $\sin ^{2} x=(\sin x)^{2}, \quad \cos ^{2} x=(\cos x)^{2}, \quad \tan ^{2} x=(\tan x)^{2}$.

Lines

The line $y=m x+c$ has slope m.
The line through $\left(x_{1}, y_{1}\right)$ with slope m has equation $y-y_{1}=m\left(x-x_{1}\right)$.
The line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ has slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ and equation $\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
The line $y=m x+c$ is perpendicular to the line $y=m^{\prime} x+c^{\prime}$ if $m m^{\prime}=-1$.

Circles

The distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$.
The circle with centre (a, b) and radius r is given by $(x-a)^{2}+(y-b)^{2}=r^{2}$.

Triangles

In a triangle $A B C$,
(Sine Rule) $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} ; \quad$ (Cosine Rule) $a^{2}=b^{2}+c^{2}-2 b c \cos A$.

Pascal's Triangle

$(x+y)^{2}=x^{2}+2 x y+y^{2}, \quad(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$ and so on.
The coefficients in $(x+y)^{n}$ form the nth row of Pascal's triangle:

and so on.

Quadratics

If $a x^{2}+b x+c=0$, with $a \neq 0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Calculus

If $y=u+v$ then $\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$. If $y=u v$ then $\frac{d y}{d x}=\frac{d u}{d x} v+u \frac{d v}{d x}$.
If $y=\frac{u}{v}$ then $\frac{d y}{d x}=\left\{\frac{d u}{d x} v-u \frac{d v}{d x}\right\} / v^{2}$.
$\int(u+v) d x=\int u d x+\int v d x . \quad \int u \frac{d v}{d x} d x=u v-\int \frac{d u}{d x} v d x$.
If y is a function of u where u is a function of x, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} \quad \text { and } \quad \int y \frac{d u}{d x} d x=\int y d u
$$

Standard Derivatives and Integrals

If $y=x^{a}$ then $\frac{d y}{d x}=a x^{a-1} ;$ and $\int x^{a} d x=\frac{x^{a+1}}{a+1}+$ constant $\quad(a \neq-1)$.
If $y=\sin x$ then $\frac{d y}{d x}=\cos x$; and $\int \sin x d x=-\cos x+$ constant.
If $y=\cos x$ then $\frac{d y}{d x}=-\sin x ;$ and $\int \cos x d x=\sin x+$ constant.
If $y=\tan x$ then $\frac{d y}{d x}=\sec ^{2} x$; and $\int \tan x d x=\ln |\sec x|+$ constant.
If $y=e^{x}$ then $\frac{d y}{d x}=e^{x}$; and $\int e^{x} d x=e^{x}+$ constant.
If $y=\ln x$ then $\frac{d y}{d x}=\frac{1}{x}$; and $\int \frac{1}{x} d x=\ln |x|+$ constant.
If $y=\sin ^{-1} x$ then $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}} ;$ and $\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+$ constant.
If $y=\cos ^{-1} x$ then $\frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}}$.
If $y=\tan ^{-1} x$ then $\frac{d y}{d x}=\frac{1}{1+x^{2}} ;$ and $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+$ constant.

