LANCASTER UNIVERSITY
 2000 EXAMINATIONS

Part I

PHYSICS - Paper PS1.2

- Candidates should attempt all those sections identified with the modules for which they are registered.
- Candidates who attended PHYS113, PHYS114 and/or PHYS115 attempt sections A, B and/or C.
- Candidates who attended PHYS113a, PHYS114a and/or PHYS115a attempt sections D, E and/or F.
- The time allocated is 60 minutes per section.
- An indication of mark weighting (30 marks per section) is given by the numbers in square brackets following each part.
- In each section attempted, candidates should answer question 1 (10 marks) and either question 2 or question 3 (20 marks).
- Use a separate answer book for each section.

PHYS110

Section A: Module 113 - Complex Numbers and Calculus For candidates who attended PHYS113 (NOT PHYS113a)

A1. (a) Find the modulus and the complex conjugate of $z=9-12 i$.
(b) Rationalise the function $w=\frac{3+2 i}{9-12 i}$ into the form $x+i y$.
(c) Convert the complex number $z=9-12 i$ into the polar form $r(\cos \theta+i \sin \theta)$ and plot this on an Argand diagram.
(d) For the function $y=4 x^{3}+3 x$, find the value of $\frac{d y}{d x}$ at $x=0.5$.

A2. (a) What is the square root of the complex number $u=0.90 e^{i \theta}$ where $\theta=2 \pi / 5$.

Convert both u and \sqrt{u} into Cartesian form.

For $n=0,1,2,3,4$, and 5, plot u^{n} on an Argand diagram.
Regarding these points as marking positions on a smooth path, sketch the continuation of this path as $n \rightarrow \infty$.
(b) The graph supplied shows the function $y(x)=x^{2}+x^{3}$. By drawing tangents to the curve plotted, find the rate of change of $y(x)$ with respect to x at the points where $x=1.0$ and $x=-0.5$.
(Insert your name on the graph and attach this to your answer book.)
Find an expression for $\frac{d y}{d x}$ and use this to discuss the accuracy of the graphical method for evaluating a rate of change.

A3. (a) Differentiate the following functions with respect to x :
(i) $y(x)=7 x^{5}$.
(ii) $y(x)=7 \sin (5 x)$.
(iii) $y(x)=7 x^{5} \sin (5 x)$.
(iv) $y(x)=\frac{7 x^{5}}{\cos (5 x)}$.
(v) $y(x)=7 \log _{10}(5 x)$.
(vi) $y(x)=7 x^{5} \log _{10}(5 x)$.
(b) If $z=(\cos \theta+i \sin \theta)$, use Demoivre's theorem to show that

$$
\begin{equation*}
\cos (4 \theta)=\frac{1}{2}\left(z^{4}+\frac{1}{z^{4}}\right) . \tag{2}
\end{equation*}
$$

Hence or otherwise show that $\cos (4 \theta)=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$.

Section B: Module 114 - Differentiation For candidates who attended PHYS114 (NOT PHYS114a)

B1. The pressure P depends on the volume V through the equation

$$
\left(P+\frac{a}{V^{2}}\right) V=R T
$$

where a, T and R are positive constants in this case.
(a) Find an expression for $P(V)$.
(b) Find the conditions on V for which $P(V)=0$ and $P(V)>0$.
(c) Differentiate P with respect to V.
(d) Find the value of V for which the maximum value of P occurs.
(e) What is the maximum value of P ?

B2. (a) Find the first derivatives of the following functions of x :
(i) $x e^{x^{2}}$,
(ii) $x \log _{e}(2 x)$,
(iii) $\sin ^{2} x$.
(b) Find $\frac{d y}{d x}$ for the implicit function

$$
\begin{equation*}
x^{2}+5 x y+y^{2}=0 . \tag{4}
\end{equation*}
$$

(c) Find the minima, maxima and points of inflection of the function

$$
\begin{equation*}
f(x)=|x| e^{-x^{2}} \tag{10}
\end{equation*}
$$

Sketch the function.

B3. (a) Compute the first and second derivatives of the following function

$$
\begin{equation*}
f(x)=\frac{e^{x}}{x+1} . \tag{4}
\end{equation*}
$$

(b) Write down the general formula for the Taylor expansion of a function around $x=a$ and hence compute the Taylor expansion of $f(x)$ given in part (a) around $x=0$ up to and including terms in x^{2}.
(c) Compute the value of the Taylor expansion obtained in part (b) at $x=0$ and compare it to the values of $f(x)$ there. Repeat this for $x=1$ and comment on how the accuracy of the expansion could be improved.

Section C: Module 115 - Integration For candidates who attended PHYS115 (NOT PHYS115a)

C1. Evaluate the following definite integrals
(a)

$$
\begin{equation*}
\int_{0}^{\pi / 2} \sin ^{2} x \cos x d x \tag{3}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int_{-2}^{-1} \frac{x}{\sqrt{x+2}} d x \tag{3}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\int_{0}^{\pi / 2} x \cos x d x \tag{4}
\end{equation*}
$$

C2. (a) Without performing any integrations, state whether each of the following statements are true or false and explain your answers:
(i)

$$
\begin{equation*}
\int_{-\pi / 2}^{\pi / 2} \cos ^{3} x d x=0 \tag{2}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\int_{-\pi}^{\pi} \sin ^{2} x d x=2 \int_{0}^{\pi} \sin ^{2} x d x \tag{2}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\int_{-1}^{1} x^{2} \sin x d x=0 \tag{2}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\int_{0}^{1} x^{3} e^{x} d x<0 \tag{2}
\end{equation*}
$$

(b) The velocity $v=\frac{d x}{d t}$ of an object performing damped simple harmonic motion is given by

$$
v=A e^{-\gamma t} \sin \omega t
$$

where A, γ and ω are constants.
(i) Using integration (by parts or otherwise) show that the position of the object is given by

$$
\begin{equation*}
x=\frac{-A \gamma e^{-\gamma t}}{\gamma^{2}+\omega^{2}}\left(\sin \omega t+\frac{\omega}{\gamma} \cos \omega t\right)+c \tag{10}
\end{equation*}
$$

where c is a constant.
(ii) If the object starts from position $x=0$ at time $t=0$, determine the constant c.

C3. (a) Calculate the area enclosed by the graphs of $y=x^{2}$ and $y=x$.
(b) A solid bar with circular cross-section lies along the x-axis from $x=0$ to $x=L$. The bar has a variable radius given by

$$
r(x)=R \sqrt{1+\frac{x}{L}}
$$

where R is a constant.
(i) Show that the total volume of the bar is $\frac{3}{2} \pi R^{2} L$.
(ii) If the density of the bar as a function of position x is given by

$$
\rho=\rho_{0} \exp \left(1+\frac{x}{L}\right)
$$

where ρ_{0} is a constant, find the total mass of the bar and hence its average density.

PHYS110a

Section D: Module 113a - Vectors For candidates who attended PHYS113a (NOT PHYS113)

D1. (a) Give three examples of physical quantities which are scalars.
(b) Give three examples of physical quantities which are vectors.
$\boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k} are unit vectors parallel to the x, y and z axes of the Cartesian coordinate system shown in the figure below.

Evaluate the following
(c) $|\boldsymbol{k}|$.
(d) $\boldsymbol{j} \times \boldsymbol{j}$.
(e) $\boldsymbol{j} \cdot \boldsymbol{k}$.
(f) $\boldsymbol{j} \times \boldsymbol{i}$.

D2. When a body undergoes a displacement \boldsymbol{S} whilst experiencing a force \boldsymbol{F}, the work done is $W=\boldsymbol{F} \cdot \boldsymbol{S}$.
(a) If \boldsymbol{F} and \boldsymbol{S} are non-zero, under what condition is $W=0$.

When $\boldsymbol{S}=(1,2,3) \mathrm{m}$ and $\boldsymbol{F}=(3,1,1) \mathrm{N}$
(b) find the work done, [3]
(c) compute $|\boldsymbol{F}|$ and $|\boldsymbol{S}|$,
(d) find the angle θ between \boldsymbol{F} and \boldsymbol{S}.

D3. When a particle with charge q and velocity \mathbf{v} moves in a magnetic field \boldsymbol{B}, it experiences a force $\boldsymbol{F}=q \boldsymbol{v} \times \boldsymbol{B}$.
(a) Show on a sketch the direction of \boldsymbol{F} in relation to \boldsymbol{v} and \boldsymbol{B}.
(b) For $q,|\boldsymbol{v}|,|\boldsymbol{B}|$ non-zero, discuss the condition for which $|\boldsymbol{F}|=0$.
(c) For the specific case $\boldsymbol{v}=(1,2,3) \mathrm{ms}^{-1}, \boldsymbol{B}=(4,5,6) \mathrm{T}$, and $q=1 \mathrm{C}$, compute:
(i) \boldsymbol{F},
(ii) $|\boldsymbol{F}|$,
(iii) $\boldsymbol{F} \cdot \boldsymbol{B}$.

Section E: Module 114a - Differentiation For candidates who attended PHYS114a (NOT PHYS114)

E1. (a) Sketch graphs showing the acceleration, speed and position as a function of time for a body moving with uniform acceleration. State your assumptions for the conditions at $t=0$.
(b) The surface area of a sphere is $A=4 \pi r^{2}$. Find an expression for $\frac{d A}{d r}$.
(c) For the function $y=4 x^{3}+3 x$, find the value of $\frac{d y}{d x}$ at $x=0.5$.
(d) Differentiate the function $y=\log _{e}\left(5 x^{2}+3 x\right)$ with respect to x.
(e) Find an expression giving $\frac{d^{2} y}{d t^{2}}$ for the function $y=y_{0} \cos (\omega t+\phi)$.

E2. (a) Differentiate the following functions with respect to x :
(i) $y(x)=7 x^{5}$.
(ii) $y(x)=7 \sin (5 x)$.
(iii) $y(x)=7 x^{5} \sin (5 x)$.
(iv) $y(x)=\frac{7 x^{5}}{\cos (5 x)}$.
(v) $y(x)=7 \log _{10}(5 x)$.
(vi) $y(x)=7 x^{5} \log _{10}(5 x)$.
(b) The graph supplied shows the function $y(x)=x^{2}+x^{3}$. By drawing tangents to the curve plotted, find the rate of change of $y(x)$ with respect to x at the points where $x=1.0$ and $x=-0.5$.
(Insert your name on the graph and attach this to your answer book.)
Find an expression for $\frac{d y}{d x}$ and use this to discuss the accuracy of the graphical method for evaluating a rate of change.

E3. For each of the following functions
(a) $y=\cos \left(x^{3}\right)$,
(b) $y=\cos ^{3}(x)$,
(c) $y=\log _{e}(\sin x)$,
(d) $y=\sin \left(\log _{e} x\right)$.
(i) Find $\frac{d y}{d x}$.
(ii) Find $\frac{d^{2} y}{d x^{2}}$.
(iii) Define the domain of x for which the function is valid.

Section F: Module 115a - Further Calculus For candidates who attended PHYS115a (NOT PHYS115)

F1. Find the minima, maxima and points of inflection of the function

$$
\begin{equation*}
f(x)=6 x^{4}-4 x^{3} . \tag{10}
\end{equation*}
$$

F2. Consider the function

$$
f(x)=x e^{-x^{2}}
$$

(a) Discuss whether the function is even or odd.
(b) Where does $f(x)$ cross the x-axis?
(c) What are the asymptotes of $f(x)$ at large $|x|$?
(d) Compute $\frac{d f}{d x}$ and $\frac{d^{2} f}{d x^{2}}$.
(e) Find the minima, maxima and points of inflection of $f(x)$.
(f) Sketch the function.

F3. (a) Evaluate the following integrals
(i)

$$
\int \cos 2 x d x
$$

(ii)

$$
\int \frac{d x}{x^{3 / 2}}
$$

(iii)

$$
\begin{equation*}
\int_{1}^{2} \frac{d x}{x} \tag{10}
\end{equation*}
$$

(b) Explain what is meant by an odd function and an even function. Without performing the actual integration, evaluate the integral

$$
\begin{equation*}
\int_{-1}^{1} e^{-x^{4}+x^{2}+1} \sin 2 x d x \tag{5}
\end{equation*}
$$

(c) Find the relationship between the parameters m, k and ω in order for the function $y(t)=e^{\omega t}$ to be a solution of the differential equation

$$
\begin{equation*}
m \frac{d^{2} y(t)}{d t^{2}}=k y(t) \tag{5}
\end{equation*}
$$

