

Part I

PHYSICS - Paper PS1.2

- Candidates should attempt all those sections identified with the modules for which they are registered.
- Candidates who attended PHYS113, PHYS114 and/or PHYS115 attempt sections A, B and/or C.
- Candidates who attended PHYS113a, PHYS114a and/or PHYS115a attempt sections D, E and/or F.
- The time allocated is 60 minutes per section.
- An indication of mark weighting (30 marks per section) is given by the numbers in square brackets following each part.
- In each section attempted, candidates should answer question 1 (10 marks) and <u>either</u> question 2 <u>or</u> question 3 (20 marks).
- Use a separate answer book for each section.

PHYS110

Section A: Module 113 - Complex Numbers and Calculus For candidates who attended PHYS113 (NOT PHYS113a)

- A1. (a) Find the modulus and the complex conjugate of z = 9 12i. [2]
 - (b) Rationalise the function $w = \frac{3+2i}{9-12i}$ into the form x + iy. [2]
 - (c) Convert the complex number z = 9 12i into the polar form $r(\cos \theta + i \sin \theta)$ and plot this on an Argand diagram. [3]

(d) For the function $y = 4x^3 + 3x$, find the value of $\frac{dy}{dx}$ at x = 0.5. [3]

please turn over

A2. (a) What is the square root of the complex number $u = 0.90 e^{i\theta}$ where $\theta = 2\pi/5$. [2]

Convert both u and \sqrt{u} into Cartesian form. [4] For n = 0, 1, 2, 3, 4, and 5, plot u^n on an Argand diagram. [4] Regarding these points as marking positions on a smooth path, sketch the continuation of this path as $n \to \infty$. [2]

- (b) The graph supplied shows the function y(x) = x² + x³. By drawing tangents to the curve plotted, find the rate of change of y(x) with respect to x at the points where x = 1.0 and x = -0.5. [4]
 (Insert your name on the graph and attach this to your answer book.)
 Find an expression for dy/dx and use this to discuss the accuracy of the graphical method for evaluating a rate of change. [4]
- A3. (a) Differentiate the following functions with respect to x:
 - (i) $y(x) = 7x^5$.
 - (ii) $y(x) = 7\sin(5x)$.
 - (iii) $y(x) = 7x^5 \sin(5x)$.
 - (iv) $y(x) = \frac{7x^5}{\cos(5x)}$.

(v)
$$y(x) = 7 \log_{10}(5x).$$

(vi) $y(x) = 7x^5 \log_{10}(5x).$

(b) If $z = (\cos \theta + i \sin \theta)$, use Demoivre's theorem to show that

$$\cos(4\theta) = \frac{1}{2} \left(z^4 + \frac{1}{z^4} \right).$$
 [2]

[12]

[2]

Hence or otherwise show that $\cos(4\theta) = 8\cos^4\theta - 8\cos^2\theta + 1.$ [6]

Section B: Module 114 - Differentiation For candidates who attended PHYS114 (NOT PHYS114a)

B1. The pressure P depends on the volume V through the equation

$$\left(P + \frac{a}{V^2}\right)V = RT$$

where a, T and R are positive constants in this case.

- (a) Find an expression for P(V). [1]
 (b) Find the conditions on V for which P(V) = 0 and P(V) > 0. [2]
- (c) Differentiate P with respect to V. [3]
 (d) Find the value of V for which the maximum value of P occurs. [2]
- (e) What is the maximum value of P?

B2. (a) Find the first derivatives of the following functions of x:

(i)
$$x e^{x^2}$$
,
(ii) $x \log_e (2x)$,
(iii) $\sin^2 x$.
[6]

(b) Find $\frac{dy}{dx}$ for the implicit function

$$x^2 + 5xy + y^2 = 0.$$
 [4]

(c) Find the minima, maxima and points of inflection of the function

$$f(x) = |x| e^{-x^2}.$$

Sketch the function.

B3. (a) Compute the first and second derivatives of the following function

$$f(x) = \frac{e^x}{x+1}.$$
[4]

[10]

- (b) Write down the general formula for the Taylor expansion of a function around x = a and hence compute the Taylor expansion of f(x) given in part (a) around x = 0 up to and including terms in x^2 . [11]
- (c) Compute the value of the Taylor expansion obtained in part (b) at x = 0 and compare it to the values of f(x) there. Repeat this for x = 1 and comment on how the accuracy of the expansion could be improved. [5]

Section C: Module 115 - Integration For candidates who attended PHYS115 (NOT PHYS115a)

- C1. Evaluate the following definite integrals
 - (a)

(c)

$$\int_0^{\pi/2} \sin^2 x \cos x \, dx. \tag{3}$$

(b) $\int_{-2}^{-1} \frac{x}{\sqrt{x+2}} \, dx$ [3]

$$\int_0^{\pi/2} x \cos x \, dx. \tag{4}$$

please turn over

- C2. (a) Without performing any integrations, state whether each of the following statements are true or false and explain your answers:
 - $\int_{-\pi/2}^{\pi/2} \cos^3 x \, dx = 0 \tag{2}$
 - (ii) $\int_{-\pi}^{\pi} \sin^2 x \, dx = 2 \int_{0}^{\pi} \sin^2 x \, dx \qquad [2]$

(i)

$$\int_{-1}^{1} x^2 \sin x \, dx = 0 \tag{2}$$

(iv)

$$\int_{0}^{1} x^{3} e^{x} \, dx < 0 \tag{2}$$

[10]

(b) The velocity $v = \frac{dx}{dt}$ of an object performing damped simple harmonic motion is given by

 $v = A e^{-\gamma t} \sin \omega t$

where A, γ and ω are constants.

(i) Using integration (by parts or otherwise) show that the position of the object is given by

$$x = \frac{-A\gamma e^{-\gamma t}}{\gamma^2 + \omega^2} \left(\sin \omega t + \frac{\omega}{\gamma} \cos \omega t \right) + c$$

where c is a constant.

- (ii) If the object starts from position x = 0 at time t = 0, determine the constant c. [2]
- C3. (a) Calculate the area enclosed by the graphs of $y = x^2$ and y = x. [6]
 - (b) A solid bar with circular cross-section lies along the x-axis from x = 0 to x = L. The bar has a variable radius given by

$$r(x) = R\sqrt{1 + \frac{x}{L}}$$

where R is a constant.

- (i) Show that the total volume of the bar is $\frac{3}{2}\pi R^2 L$. [6]
- (ii) If the density of the bar as a function of position x is given by

$$\rho = \rho_0 \exp\left(1 + \frac{x}{L}\right)$$

where ρ_0 is a constant, find the total mass of the bar and hence its average density. [8]

PHYS110a

Section D: Module 113a - Vectors For candidates who attended PHYS113a (NOT PHYS113)

- D1. (a) Give three examples of physical quantities which are scalars. [3]
 - (b) Give three examples of physical quantities which are vectors. [3]

i, j and k are unit vectors parallel to the x, y and z axes of the Cartesian coordinate system shown in the figure below.

Evaluate the following

(c) k .	[1]
(d) $\boldsymbol{j} \times \boldsymbol{j}$.	[1]
(e) $\boldsymbol{j} \cdot \boldsymbol{k}$.	[1]
(f) $\boldsymbol{j} \times \boldsymbol{i}$.	[1]

D2. When a body undergoes a displacement S whilst experiencing a force F, the work done is $W = F \cdot S$.

(a) If \boldsymbol{F} and \boldsymbol{S} are non-zero, under what condition is $W = 0$.	[3]
--	-----

When S = (1, 2, 3) m and F = (3, 1, 1) N

- (b) find the work done, [3] (c) compute $|\mathbf{F}|$ and $|\mathbf{S}|$, [6]
- (d) find the angle θ between F and S. [8]

please turn over

- D3. When a particle with charge q and velocity \mathbf{v} moves in a magnetic field \mathbf{B} , it experiences a force $\mathbf{F} = q \ \mathbf{v} \times \mathbf{B}$.
 - (a) Show on a sketch the direction of \boldsymbol{F} in relation to \boldsymbol{v} and \boldsymbol{B} . [3]
 - (b) For $q, |\boldsymbol{v}|, |\boldsymbol{B}|$ non-zero, discuss the condition for which $|\boldsymbol{F}| = 0.$ [3]
 - (c) For the specific case $\boldsymbol{v} = (1, 2, 3) \text{ ms}^{-1}$, $\boldsymbol{B} = (4, 5, 6) \text{ T}$, and q = 1 C, compute:
 - (i) \boldsymbol{F} , [8]

(ii)
$$|\mathbf{F}|$$
, [3]

[3]

(iii) $\boldsymbol{F} \cdot \boldsymbol{B}$.

Section E: Module 114a - Differentiation For candidates who attended PHYS114a (NOT PHYS114)

- E1. (a) Sketch graphs showing the acceleration, speed and position as a function of time for a body moving with uniform acceleration. State your assumptions for the conditions at t = 0. [3]
 - (b) The surface area of a sphere is $A = 4\pi r^2$. Find an expression for $\frac{dA}{dr}$. [1]
 - (c) For the function $y = 4x^3 + 3x$, find the value of $\frac{dy}{dx}$ at x = 0.5. [2]
 - (d) Differentiate the function $y = \log_e(5x^2 + 3x)$ with respect to x. [2]
 - (e) Find an expression giving $\frac{d^2y}{dt^2}$ for the function $y = y_0 \cos(\omega t + \phi)$. [2]
- E2. (a) Differentiate the following functions with respect to x:

(i)
$$y(x) = 7x^5$$
.
(ii) $y(x) = 7\sin(5x)$.
(iii) $y(x) = 7x^5\sin(5x)$.
(iv) $y(x) = \frac{7x^5}{\cos(5x)}$.
(v) $y(x) = 7\log_{10}(5x)$.
(vi) $y(x) = 7x^5\log_{10}(5x)$.
[12]

(b) The graph supplied shows the function y(x) = x² + x³. By drawing tangents to the curve plotted, find the rate of change of y(x) with respect to x at the points where x = 1.0 and x = -0.5. [4] (Insert your name on the graph and attach this to your answer book.) Find an expression for dy/dx and use this to discuss the accuracy of the graphical method for evaluating a rate of change. [4]

E3. For each of the following functions

(a)
$$y = \cos(x^3)$$
,
(b) $y = \cos^3(x)$,
(c) $y = \log_e(\sin x)$,
(d) $y = \sin(\log_e x)$.
(i) Find $\frac{dy}{dx}$.
(ii) Find $\frac{d^2y}{dx^2}$.
(iii) Define the domain of x for which the function is valid.
[8]

Section F: Module 115a - Further Calculus For candidates who attended PHYS115a (NOT PHYS115)

F1. Find the minima, maxima and points of inflection of the function

$$f(x) = 6x^4 - 4x^3.$$
[10]

F2. Consider the function

$$f(x) = x e^{-x^2}.$$

(a) Discuss whether the function is even or odd.	[2]
(b) Where does $f(x)$ cross the x-axis?	[2]
(c) What are the asymptotes of $f(x)$ at large $ x $?	[2]
(d) Compute $\frac{df}{dx}$ and $\frac{d^2f}{dx^2}$.	[5]
(e) Find the minima, maxima and points of inflection of $f(x)$.	[6]
(f) Sketch the function.	[3]

F3. (a) Evaluate the following integrals

- (i) $\int \cos 2x \, dx$ (ii) $\int \frac{dx}{x^{3/2}}$ (iii) $\int_{1}^{2} \frac{dx}{x}$ [10]
- (b) Explain what is meant by an odd function and an even function. Without performing the actual integration, evaluate the integral

$$\int_{-1}^{1} e^{-x^4 + x^2 + 1} \sin 2x \, dx.$$
 [5]

(c) Find the relationship between the parameters m, k and ω in order for the function $y(t) = e^{\omega t}$ to be a solution of the differential equation

$$m\frac{d^2y(t)}{dt^2} = ky(t).$$
[5]