LANCASTER UNIVERSITY
 2000 EXAMINATIONS

Part I
PHYSICS - Paper PS1.1

- Candidates should attempt all those sections identified with the modules for which they are registered.
- Candidates who attended PHYS111 8/or PHYS112 attempt sections A E/or B.
- Candidates who attended PHYS111a छ/or PHYS112a attempt sections C E/or D.
- The time allocated is 60 minutes per section.
- An indication of mark weighting (30 marks per section) is given by the numbers in square brackets following each part.
- In each section attempted, candidates should answer question 1 (10 marks) and either question 2 or question 3 (20 marks).
- Use a separate answer book for each section.

PHYS110

Section A: Module 111 - Relations, Functions and Series For candidates who attended PHYS111 (NOT PHYS111a).

A1. (a) The equation of a straight line is

$$
3 x+2 y-5=0 .
$$

Find the slope and the intercepts on the x and y axes. Sketch its graph.
(b) Explain briefly what is meant by a periodic function. Give one example including a sketch to illustrate your answer.
(c) Use your calculator to find $\log _{10} 5$ and $\log _{10} 8$. Hence find $\log _{5} 8$.
(d) Given that the exact value of $\tan (\pi / 6)=\frac{1}{\sqrt{3}}$, find the exact value of $\tan (\pi / 12)$.

A2. (a) Identify each of the following series as geometric, arithmetic or binomial. Find the sum of each series.
(i) $\sum_{k=0}^{99}(5+2 k)$
(ii) $\quad \sum_{k=0}^{4} 5^{k}$
(iii) $\sum_{k=0}^{5}{ }^{5} C_{5-k} 2^{k}$
(b) What is meant by the convergence of an infinite series? The series expansion for e^{x} is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Use the D'Alembert ratio test to confirm that the series converges for any finite positive value of x. Use this series to calculate a value for $\sqrt[3]{e}$ to two decimal places. Check your result with a calculator.
(c) The first three terms of the expansion of $(1+x)^{r}$ for any real number r, are:

$$
(1+x)^{r}=1+r x+\frac{r(r-1) x^{2}}{2!}+\ldots
$$

Use this expansion to show that Einstein's equation $E=m c^{2}\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}$ for the total energy E of a particle mass m moving with speed v may be written

$$
\begin{equation*}
E \approx m c^{2}+\frac{1}{2} m v^{2} \tag{6}
\end{equation*}
$$

when v is very much less than the speed of light $c(v \ll c)$.

A3. (Calculus methods should not be used in this question) A ball is thrown from a point $(0, h)$ so that its x (horizontal) and y (vertical) coordinates are given by:

$$
\begin{gathered}
x=u t, \\
y=h+v t-\frac{1}{2} g t^{2} .
\end{gathered}
$$

Show that the path of the ball is given by an equation of the form $y=a x^{2}+b x+c$. Find a, b and c in terms of u, v, h and g.
Describe briefly the type of curve followed by the ball. Find the coordinates of the point where the ball reaches its maximum height in the case when $h=7 \mathrm{~m}$,
$u=3 \mathrm{~m} \mathrm{~s}^{-1}, v=5 \mathrm{~m} \mathrm{~s}^{-1}$ and $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.
Make a sketch of the ball's path including the x-coordinate when it reaches $y=0$.

If $h=-7 \mathrm{~m}$ and u, v and g are unchanged, under what circumstances will the ball never reach $y=0$?

Section B: Module 112 - Vectors and Geometry For candidates who attended PHYS112 (NOT PHYS112a).

B1. (a) Give the name of the conic sections described by the following equations
(i) $x^{2}+y^{2}=a^{2}$
(ii) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(ii) $y=a x^{2}$
(iii) $y=a / x$
(b) Give three examples of physical quantities which are scalars. [1]
(c) Give three examples of physical quantities which are vectors.
(d) If $\underline{A}=(1,2,3)$ and $\underline{B}=(4,5,6)$, compute $\underline{A} \times \underline{B}$.

B2. (a) Show that the line $x+3 y=1$ is a tangent to the circle $x^{2}+y^{2}-3 x-3 y+2=0$ and find the coordinates of the point of contact. [7]
(b) What are the coordinates of the centre of the circle and what is the radius of the circle?
(c) Prove, by calculation, that the point $(3,2.5)$ lies outside the circle.

B3. A body undergoes a displacement $\underline{\boldsymbol{S}}=(1,2,2) \mathrm{m}$ whilst experiencing a constant force $\underline{\boldsymbol{F}}=(5,-1,2) \mathrm{N}$.
(a) Find the work done.
(b) Compute $|\underline{\boldsymbol{F}}|$ and $|\underline{\boldsymbol{S}}|$.
(c) Find the angle θ between $\underline{\boldsymbol{F}}$ and $\underline{\boldsymbol{S}}$.

PHYS110a

Section C: Module 111a - Algebra and Functions For candidates who attended PHYS111a (NOT PHYS111).

C1. (a) Expand the following expressions and write your answers in as simple a form as possible:
(i) $(x+3)(x+4)-x^{2}$
(ii) $x\left(x^{2}+1\right)(x-1)+2 x$
(b) What is the gradient of a straight line which passes through the points $(1,3)$ and $(5,5) ?$
(c) Solve the following simultaneous equations:

$$
\begin{gather*}
3 x+y=7, \\
x-y=1 . \tag{2}
\end{gather*}
$$

(d) What are the coordinates of the vertex (turning point) of the graph of $y=(x-1)^{2}$?
C2. (a) Consider the two functions, $y=x^{2}-3 x+2$ and $y=x^{2}-8 x+15$.
(i) Sketch the graphs of the two functions beween $x=0$ and $x=6$ on a single pair of axes. What are the intercepts of the two curves with the y-axis? What are the intercepts of the two curves with the x-axis?
(ii) Hence or otherwise, express the two functions in the form $y=(x+\alpha)(x+\beta)$ where α and β are constants.
(iii) For each curve find the coordinates of the vertex (turning point).
(b) A stone is thrown vertically upwards into the air from the ground with an initial speed $u_{0}=20 \mathrm{~ms}^{-1}$. The height of the stone above the ground is given by

$$
h=u_{0} t+\frac{1}{2} a t^{2}
$$

where $a=-10 \mathrm{~ms}^{-2}$. How long does it take for the stone to hit the ground and what is the maximum height reached by the stone?

C3. (a) The two shorter sides of a right angled triangle have lengths of 6 m and 8 m . Find the length of the third side and find the interior angles of the triangle. [3]
(b) Use the Pythagoras theorem to prove the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$.
(c) Re-write the following expressions in terms of $\sin \theta$:
(i) $\sin (-\theta)$
(ii) $\sin \left(\theta+180^{\circ}\right)$
(iii) $\cos \left(\theta+90^{\circ}\right)$
(iv) $\cos \left(\theta-90^{\circ}\right)$
(d) Find all the possible value of θ in the range $\theta^{\circ} \leq \theta \leq 360^{\circ}$ which satisfy the equations:
(i) $|\tan \theta|=1$
(ii) $\sec \theta=\sqrt{2}$
(e) What are the internal angles of a triangle with:
(i) side lengths of $2 \mathrm{~m}, 2 \mathrm{~m}$ and 3 m ,
(ii) side lengths $3 \mathrm{~m}, 3 \mathrm{~m}$ and 4.5 m ?

Section D: Module 112a - Functions and Geometry For candidates who attended PHYS112a (NOT PHYS112).

D1. (a) Without using a calculator, find the values of $\log _{10} 10$ and $\log _{10} 100$. Given that $\log _{10} 5=0.699$ find the values of $\log _{10} 50$ and $\log _{10} 500$.
(b) What shape does the equation $x^{2}+y^{2}=R^{2}$ represent? What does R tell us? [2]
(c) What is the radius of a circle that encloses the same area as a square of side 2.00 m .

D2. Consider the following series of six terms:

$$
1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243} .
$$

Write down an expression for this series using the \sum notation. Is the series geometric, arithmetic or binomial? Find the sum of the series using the appropriate formula.

Given the infinite series

$$
(1+x)^{r}=1+\frac{r x}{1}+\frac{r(r-1) x^{2}}{2!}+\frac{r(r-1)(r-2) x^{3}}{3!}+\ldots \quad \text { for }-1<x<1,
$$

write down the first three terms of the series for $(1+x)^{-3}$. Hence, find an approximate value for $\frac{1}{1.01^{3}}$.
Find the infinite series for $\frac{1}{1-x}(-1<x<1)$.
D3. (a) The equations for two straight lines are

$$
\begin{aligned}
& y=0.5 x+4, \\
& y=-2 x+5 .
\end{aligned}
$$

Make a sketch of the two lines. Find the coordinates of the point where the two lines intersect. Are the two lines perpendicular to each other? Explain your answer.
(b) The equation $y=4 x^{2}$ represents a parabola. Make a rough sketch of it. Find the coordinates of the points where the straight line $y=3 x+1$ meets the parabola.
(c) Find the value of c such that the line $y=3 x+c$ is a tangent to the parabola. What are the coordinates of the point where the tangent touches the parabola.

