King's College London

UNIVERSITY OF LONDON

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CP3221 Spectroscopy and Quantum Mechanics Examiner: Dr. C. Molteni

Summer 2007

Time allowed: THREE Hours

Candidates should answer ALL parts of SECTION A, and no more than TWO questions from SECTION B.

No credit will be given for answering a further question from SECTION B.

The approximate mark for each part of a question is indicated in square brackets.

You may only use a College-approved calculator for this paper.

Physical Constants

Permittivity of free space	\mathcal{E}_0	=	8.854×10^{-12}	$F m^{-1}$
Permeability of free space	μ_0	=	$4~\pi\times10^{-7}$	$H m^{-1}$
Speed of light in free space	c	=	2.998×10^{8}	$m s^{-1}$
Gravitational constant	G	=	6.673×10^{-11}	$N m^2 kg^{-2}$
Elementary charge	e	=	1.602×10^{-19}	C
Electron rest mass	$m_{\rm e}$	=	9.109×10^{-31}	kg
Unified atomic mass unit	$m_{\rm u}$	=	1.661×10^{-27}	kg
Proton rest mass	$m_{\rm p}$	=	1.673×10^{-27}	kg
Neutron rest mass	$m_{\rm n}$	=	1.675×10^{-27}	kg
Planck constant	h	=	6.626×10^{-34}	J s
Boltzmann constant	$k_{\rm B}$	=	1.381×10^{-23}	$J K^{-1}$
Stefan-Boltzmann constant	σ	=	5.670×10^{-8}	$W\ m^{-2}\ K^{-4}$
Gas constant	R	=	8.314	$J \; mol^{-1} \; K^{-1}$
Avogadro constant	$N_{\rm A}$	=	6.022×10^{23}	mol^{-1}
Molar volume of ideal gas at STP		=	2.241×10^{-2}	m^3
One standard atmosphere	P_0	=	1.013×10^{5}	$N m^{-2}$

Spherical polar coordinates:

$$x = r \cos \varphi \sin \vartheta$$

$$y = r \sin \varphi \sin \vartheta$$

$$z = r \cos \theta$$

$$r \ge 0$$
; $0 \le \varphi < 2\pi$; $0 \le \vartheta < \pi$

For a harmonic oscillator of mass m and angular frequency ω the ground state wavefunction is

$$\psi_0 = \left| 0 \right\rangle = \left(\frac{m\omega}{\pi\hbar} \right)^{\frac{1}{4}} \exp\left(-\frac{m\omega x^2}{2\hbar} \right)$$

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a} + \hat{a}^{\dagger} \right), \qquad \hat{a}^{\dagger} \left| n \right\rangle = \sqrt{n+1} \left| n+1 \right\rangle, \qquad \hat{a} \left| n \right\rangle = \sqrt{n} \left| n-1 \right\rangle.$$

The wavefunctions of the ground and first excited states for the hydrogen atom in spherical polar coordinates are:

$$\psi_{100} = |100\rangle = R_{10}(r)Y_{0,0} = \left(\frac{1}{\pi a_0^3}\right)^{\frac{1}{2}} \exp\left(-\frac{r}{a_0}\right)$$

$$\psi_{200} = |200\rangle = R_{20}(r)Y_{0,0} = \left(\frac{1}{8\pi a_0^3}\right)^{\frac{1}{2}} \left(1 - \frac{r}{2a_0}\right) \exp\left(-\frac{r}{2a_0}\right)$$

$$\psi_{210} = |210\rangle = R_{21}(r)Y_{1,0} = \left(\frac{1}{32\pi a_0^5}\right)^{\frac{1}{2}} r \exp\left(-\frac{r}{2a_0}\right) \cos \theta$$

$$\psi_{21\pm 1} = |21\pm 1\rangle = R_{21}(r)Y_{1,\pm 1} = \mp \left(\frac{1}{64\pi a_0^5}\right)^{\frac{1}{2}} r \exp\left(-\frac{r}{2a_0}\right) \sin \theta \exp\left(\pm i\phi\right)$$

Useful definite integrals:

where a_0 is the Bohr radius.

$$\int_{-\infty}^{+\infty} x^{2n} e^{-\gamma x^2} dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n (\gamma)^n} \sqrt{\frac{\pi}{\gamma}} \qquad \gamma > 0; n \text{ is a positive integer}$$

$$\int_{-\infty}^{+\infty} e^{-\gamma x^2} dx = \sqrt{\frac{\pi}{\gamma}} \qquad \gamma > 0$$

$$\int_{0}^{+\infty} x^n e^{-\beta x} dx = \frac{n!}{\beta^{n+1}} \qquad \beta > 0; n \text{ is a non - negative integer}$$

SECTION A – Answer ALL parts of this section

1.1) Prove that if the operators \hat{A} and \hat{B} are hermitian, then $i[\hat{A}, \hat{B}]$ is hermitian.

[5 marks]

1.2) An hermitian operator \hat{H} has the property $\hat{H}^4 = \hat{1}$. What are the eigenvalues of the operator \hat{H} ? What are the eigenvalues of \hat{H} if it is not restricted to be hermitian?

[6 marks]

1.3) For a harmonic oscillator of mass m and angular frequency ω , calculate $\langle k | \hat{x} | n \rangle$, where $|n\rangle$ and $|k\rangle$ are eigenstates of the harmonic oscillator, and show that it vanishes unless $n = k \pm 1$.

[7 marks]

1.4) Positronium consists of an electron and a positron bound together analogous to the electron and proton in the hydrogen atom. The spin interaction Hamiltonian of the electron and positron can be written as

$$\hat{H} = \beta \hat{S}_1 \cdot \hat{S}_2,$$

where \hat{S}_1 and \hat{S}_2 are the spin operators of the electron and the positron and β is a constant. Derive an expression for the interaction energies of positronium in the singlet and triplet states.

[8 marks]

1.5) State Hund's rules.

Assuming Hund's rules apply, derive an expression for the spectroscopic terms of the ground state of carbon (C, atomic number Z=6) and oxygen (O, Z=8).

[7 marks]

1.6) Radiation with a wavelength of 2.603 mm is absorbed by CO in a transition between the rotational level states J=0 and J=1. Calculate the moment of inertia of the CO molecule and the equilibrium separation between the carbon and oxygen nuclei.

[7 marks]

SECTION B – Answer TWO questions

2a) The hamiltonian of a one-dimensional anharmonic oscillator of mass m and angular frequency ω is

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 \hat{x}^2 + \lambda \hat{x}^4,$$

where the third term is small compared to the second.

(i) Using time-independent perturbation theory, show, to first order, that the effect of the anharmonic term is to change the energy of the ground state of the harmonic oscillator by

$$3\lambda \left(\frac{\hbar}{2m\omega}\right)^2$$

[10 marks]

(ii) What would be the first-order effect of an additional term proportional to \hat{x}^3 in the hamiltonian?

[5 marks]

b) Consider now a system described by the hamiltonian

$$\hat{H}' = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \lambda \hat{x}^4$$

[Note that \hat{H}' is similar to the hamiltonian \hat{H} of part a), but it does not have any term proportional to x^2].

(i) Use the variational method with the trial wavefunction

$$\psi(x) = \left(\frac{\beta}{\sqrt{\pi}}\right)^{1/2} e^{-\beta^2 x^2/2}$$

to show that this system has an upper limit for the ground state energy of

$$\frac{\hbar^2\beta^2}{4m} + \frac{3\lambda}{4\beta^4}.$$

[10 marks]

(ii) Use the variational method to estimate the ground state energy.

[5 marks]

For a system of spin $\frac{1}{2}$ the cartesian components of the spin operator $\hat{\mathbf{S}} = \hat{S}_x \mathbf{u}_x + \hat{S}_y \mathbf{u}_y + \hat{S}_z \mathbf{u}_z$, where \mathbf{u}_x , \mathbf{u}_y and \mathbf{u}_z are the unit vectors along the x, y and z-direction respectively, can be expressed by the matrices:

$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

a) Find the eigenvalues and normalized eigenstates of the spin operator of an electron in the direction of a unit vector $\mathbf{n} = \sin \theta \, \mathbf{u}_x + \cos \theta \, \mathbf{u}_z$ (i.e. $\hat{\mathbf{S}} \cdot \mathbf{n}$).

[14 marks]

b) A measurement of \hat{S}_x for an electron yields the value $+\frac{\hbar}{2}$. Calculate the expectation value of $\hat{\mathbf{S}} \cdot \mathbf{n}$.

[8 marks]

c) After the measurement made in b), a measurement of $\hat{\mathbf{S}} \cdot \mathbf{n}$ is carried out. What are the probabilities of observing each of the eigenvalues of $\hat{\mathbf{S}} \cdot \mathbf{n}$?

[8 marks]

Consider an unperturbed hamiltonian with eigenvalues $\hbar\omega_k$ and eigenfunctions $|\phi_k\rangle$. In first-order time-dependent perturbation theory, the amplitude $c_{k\to m}(t)$ for a transition due to the time-dependent perturbation $\lambda \hat{V}(t)$ from a state $|\phi_k\rangle$ to a state $|\phi_m\rangle$ is:

$$c_{k o m}\left(t
ight) = rac{1}{i\hbar} \int\limits_{t_0}^t \left\langle \phi_m \left| \lambda \hat{V}\left(\tilde{t}
ight) \right| \phi_k \right\rangle e^{i(\omega_m - \omega_k)\tilde{t}} d\tilde{t} \ .$$

A hydrogen atom, initially in its ground state ($|nlm\rangle = |100\rangle$), is placed in a time-dependent electric field $\mathbf{E} = (0, 0, \mathcal{E}_z)$ aligned in the z-direction, where

$$\mathcal{E}_z = \begin{cases} 0 & t < 0 \\ \mathcal{E}_0 \exp(-\gamma t) & t > 0 \end{cases}.$$

This results in the time-dependent perturbation $e\mathcal{E}_z\hat{z}$, where e is the elementary charge.

- a) Show that the probability of finding the hydrogen atom in the $|200\rangle$ state is zero. [5 marks]
- b) To first order, show that, as $t \to \infty$, the probability that the hydrogen atom has made a transition to the $|210\rangle$ state is

$$\frac{2^{15}}{3^{10}} \frac{a_0^2 e^2 \mathcal{E}_0^2}{\hbar^2 \left(\omega^2 + \gamma^2\right)},$$

where a_0 is the Bohr radius, and $\hbar\omega$ is the energy difference between the $|210\rangle$ and the ground state. [It is convenient to work in spherical polar coordinates.]

[16 marks]

c) What are the probabilities of finding the atom in the $|211\rangle$ and $|21-1\rangle$ states? [9 marks]