King's College London

 University of LondonThis paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CP3221 Spectroscopy and Quantum Mechanics Examiner: Dr. C. Molteni

Summer 2007

Time allowed: THREE Hours

Candidates should answer ALL parts of SECTION A, and no more than TWO questions from SECTION B.

No credit will be given for answering a further question from SECTIONB.

The approximate mark for each part of a question is indicated in square brackets.

You may only use a College-approved calculator for this paper.

Physical Constants

Permittivity of free space
Permeability of free space
Speed of light in free space
Gravitational constant
Elementary charge
Electron rest mass
Unified atomic mass unit
Proton rest mass
Neutron rest mass
Planck constant
Boltzmann constant
Stefan-Boltzmann constant
Gas constant
Avogadro constant
Molar volume of ideal gas at STP
One standard atmosphere

$$
\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}
$$

$$
\mu_{0}=4 \pi \times 10^{-7} \quad \mathrm{H} \mathrm{~m}^{-1}
$$

$$
c=2.998 \times 10^{8} \quad \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
G=6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}
$$

$$
e=1.602 \times 10^{-19} \mathrm{C}
$$

$$
m_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg}
$$

$$
m_{\mathrm{u}}=1.661 \times 10^{-27} \mathrm{~kg}
$$

$$
m_{\mathrm{p}}=1.673 \times 10^{-27} \mathrm{~kg}
$$

$$
m_{\mathrm{n}}=1.675 \times 10^{-27} \mathrm{~kg}
$$

$$
h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}
$$

$$
k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}
$$

$$
\sigma=5.670 \times 10^{-8} \quad \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}
$$

$$
R=8.314 \quad \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

$$
N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}
$$

$$
=2.241 \times 10^{-2} \mathrm{~m}^{3}
$$

$$
P_{0}=1.013 \times 10^{5} \quad \mathrm{~N} \mathrm{~m}^{-2}
$$

Spherical polar coordinates:
$x=r \cos \varphi \sin \vartheta$
$y=r \sin \varphi \sin \vartheta$
$z=r \cos \vartheta$
$r \geq 0 ; \quad 0 \leq \varphi<2 \pi ; \quad 0 \leq \vartheta<\pi$

For a harmonic oscillator of mass m and angular frequency ω the ground state wavefunction is

$$
\begin{gathered}
\psi_{0}=|0\rangle=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} \exp \left(-\frac{m \omega x^{2}}{2 \hbar}\right) \\
\hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right), \quad \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad \hat{a}|n\rangle=\sqrt{n}|n-1\rangle .
\end{gathered}
$$

The wavefunctions of the ground and first excited states for the hydrogen atom in spherical polar coordinates are:
$\psi_{100}=|100\rangle=R_{10}(r) Y_{0,0}=\left(\frac{1}{\pi a_{0}^{3}}\right)^{\frac{1}{2}} \exp \left(-\frac{r}{a_{0}}\right)$
$\psi_{200}=|200\rangle=R_{20}(r) Y_{0,0}=\left(\frac{1}{8 \pi a_{0}^{3}}\right)^{\frac{1}{2}}\left(1-\frac{r}{2 a_{0}}\right) \exp \left(-\frac{r}{2 a_{0}}\right)$
$\psi_{210}=|210\rangle=R_{21}(r) Y_{1,0}=\left(\frac{1}{32 \pi a_{0}^{5}}\right)^{\frac{1}{2}} r \exp \left(-\frac{r}{2 a_{0}}\right) \cos \vartheta$
$\psi_{21 \pm 1}=|21 \pm 1\rangle=R_{21}(r) Y_{1, \pm 1}=\mp\left(\frac{1}{64 \pi a_{0}^{5}}\right)^{\frac{1}{2}} r \exp \left(-\frac{r}{2 a_{0}}\right) \sin \vartheta \exp (\pm i \varphi)$
where a_{0} is the Bohr radius.

Useful definite integrals:

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} x^{2 n} e^{-\gamma x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n}(\gamma)^{n}} \sqrt{\frac{\pi}{\gamma}} \quad \gamma>0 ; n \text { is a positive integer } \\
& \int_{-\infty}^{+\infty} e^{-\gamma x^{2}} d x=\sqrt{\frac{\pi}{\gamma}} \quad \gamma>0 \\
& \int_{0}^{+\infty} x^{n} e^{-\beta x} d x=\frac{n!}{\beta^{n+1}} \quad \beta>0 ; n \text { is a non - negative integer }
\end{aligned}
$$

SECTION A - Answer ALL parts of this section

1.1) Prove that if the operators \hat{A} and \hat{B} are hermitian, then $i[\hat{A}, \hat{B}]$ is hermitian.
[5 marks]
1.2) An hermitian operator \hat{H} has the property $\hat{H}^{4}=\hat{1}$. What are the eigenvalues of the operator \hat{H} ? What are the eigenvalues of \hat{H} if it is not restricted to be hermitian?
[6 marks]
1.3) For a harmonic oscillator of mass m and angular frequency ω, calculate $\langle k| \hat{x}|n\rangle$, where $|n\rangle$ and $|k\rangle$ are eigenstates of the harmonic oscillator, and show that it vanishes unless $n=k \pm 1$.
[7 marks]
1.4) Positronium consists of an electron and a positron bound together analogous to the electron and proton in the hydrogen atom. The spin interaction Hamiltonian of the electron and positron can be written as

$$
\hat{H}=\beta \hat{S}_{1} \cdot \hat{S}_{2},
$$

where \hat{S}_{1} and \hat{S}_{2} are the spin operators of the electron and the positron and β is a constant. Derive an expression for the interaction energies of positronium in the singlet and triplet states.
1.5) State Hund's rules.

Assuming Hund's rules apply, derive an expression for the spectroscopic terms of the ground state of carbon (C , atomic number $\mathrm{Z}=6$) and oxygen ($\mathrm{O}, \mathrm{Z}=8$).
[7 marks]
1.6) Radiation with a wavelength of 2.603 mm is absorbed by CO in a transition between the rotational level states $J=0$ and $J=1$. Calculate the moment of inertia of the CO molecule and the equilibrium separation between the carbon and oxygen nuclei.
[7 marks]

SECTION B - Answer TWO questions

2a) The hamiltonian of a one-dimensional anharmonic oscillator of mass m and angular frequency ω is

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} \hat{x}^{2}+\lambda \hat{x}^{4},
$$

where the third term is small compared to the second.
(i) Using time-independent perturbation theory, show, to first order, that the effect of the anharmonic term is to change the energy of the ground state of the harmonic oscillator by

$$
3 \lambda\left(\frac{\hbar}{2 m \omega}\right)^{2}
$$

[10 marks]
(ii) What would be the first-order effect of an additional term proportional to \hat{x}^{3} in the hamiltonian?
[5 marks]
b) Consider now a system described by the hamiltonian

$$
\hat{H}^{\prime}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\lambda \hat{x}^{4}
$$

[Note that \hat{H}^{\prime} is similar to the hamiltonian \hat{H} of part a), but it does not have any term proportional to x^{2}].
(i) Use the variational method with the trial wavefunction

$$
\psi(x)=\left(\frac{\beta}{\sqrt{\pi}}\right)^{1 / 2} e^{-\beta^{2} x^{2} / 2}
$$

to show that this system has an upper limit for the ground state energy of

$$
\frac{\hbar^{2} \beta^{2}}{4 m}+\frac{3 \lambda}{4 \beta^{4}} .
$$

(ii) Use the variational method to estimate the ground state energy.
3) For a system of spin $\frac{1}{2}$ the cartesian components of the spin operator $\hat{\mathbf{S}}=\hat{S}_{x} \mathbf{u}_{\mathbf{x}}+\hat{S}_{y} \mathbf{u}_{y}+\hat{S}_{z} \mathbf{u}_{z}$, where $\mathbf{u}_{x}, \mathbf{u}_{y}$ and \mathbf{u}_{z} are the unit vectors along the x, y and z-direction respectively, can be expressed by the matrices:

$$
\hat{S}_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \hat{S}_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \hat{S}_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

a) Find the eigenvalues and normalized eigenstates of the spin operator of an electron in the direction of a unit vector $\mathbf{n}=\sin \vartheta \mathbf{u}_{\mathbf{x}}+\cos \vartheta \mathbf{u}_{z}$ (i.e. $\hat{\mathbf{S}} \cdot \mathbf{n}$).
[14 marks]
b) A measurement of \hat{S}_{x} for an electron yields the value $+\frac{\hbar}{2}$. Calculate the expectation value of $\hat{\mathbf{S}} \cdot \boldsymbol{n}$.
[8 marks]
c) After the measurement made in b), a measurement of $\hat{\mathbf{S}} \cdot \mathbf{n}$ is carried out. What are the probabilities of observing each of the eigenvalues of $\hat{\mathbf{S}} \cdot \boldsymbol{n}$?
4) Consider an unperturbed hamiltonian with eigenvalues $\hbar \omega_{k}$ and eigenfunctions $\left|\phi_{k}\right\rangle$. In first-order time-dependent perturbation theory, the amplitude $c_{k \rightarrow m}(t)$ for a transition due to the time-dependent perturbation $\lambda \hat{V}(t)$ from a state $\left|\phi_{k}\right\rangle$ to a state $\left|\phi_{m}\right\rangle$ is:

$$
c_{k \rightarrow m}(t)=\frac{1}{i \hbar} \int_{t_{0}}^{t}\left\langle\phi_{m}\right| \lambda \hat{V}(\tilde{t})\left|\phi_{k}\right\rangle e^{i\left(\omega_{m}-\omega_{k}\right) \tilde{t}} d \tilde{t}
$$

A hydrogen atom, initially in its ground state $(|n I m\rangle=|100\rangle$), is placed in a timedependent electric field $\mathbf{E}=\left(0,0, E_{z}\right)$ aligned in the z-direction, where

$$
E_{z}=\left\{\begin{array}{lc}
0 & t<0 \\
E_{0} \exp (-\gamma t) & t>0
\end{array}\right.
$$

This results in the time-dependent perturbation $e E_{z} \hat{z}$, where e is the elementary charge.
a) Show that the probability of finding the hydrogen atom in the $|200\rangle$ state is zero.
[5 marks]
b) To first order, show that, as $t \rightarrow \infty$, the probability that the hydrogen atom has made a transition to the $|210\rangle$ state is

$$
\frac{2^{15}}{3^{10}} \frac{a_{0}^{2} e^{2} E_{0}^{2}}{\hbar^{2}\left(\omega^{2}+\gamma^{2}\right)}
$$

where a_{0} is the Bohr radius, and $\hbar \omega$ is the energy difference between the $|210\rangle$ and the ground state. [It is convenient to work in spherical polar coordinates.]
[16 marks]
c) What are the probabilities of finding the atom in the $|211\rangle$ and $|21-1\rangle$ states?
[9 marks]

