King's College London

UNIVERSITY OF LONDON

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CP3221 Spectroscopy and Quantum Mechanics

Examiner: Dr. C. MOLTENI

Summer 2008

Time allowed: THREE Hours

Candidates should answer all parts of SECTION A, and no more than TWO questions from SECTION B.

No credit will be given for answering a further question from SECTION B.

The approximate mark for each part of a question is indicated in square brackets.

Calculators may be used. The following models are permitted: Casio fx83 and Casio fx85.

DO NOT REMOVE THIS EXAM PAPER FROM THE EXAMINATION ROOM

TURN OVER WHEN INSTRUCTED 2008 ©King's College London

Physical Constants

Permittivity of free space	\mathcal{E}_0 =	8.854×10^{-12}	$F m^{-1}$
Permeability of free space	μ_0 =	$4 \pi \times 10^{-7}$	$\mathrm{H} \mathrm{m}^{-1}$
Speed of light in free space	<i>c</i> =	2.998×10^8	$m s^{-1}$
Gravitational constant	G =	$6.673 imes 10^{-11}$	$N m^2 kg^{-2}$
Elementary charge	<i>e</i> =	1.602×10^{-19}	С
Electron rest mass	$m_{\rm e}$ =	9.109×10^{-31}	kg
Unified atomic mass unit	$m_{\rm u}$ =	1.661×10^{-27}	kg
Proton rest mass	$m_{\rm p}$ =	1.673×10^{-27}	kg
Neutron rest mass	$m_{\rm n}$ =	1.675×10^{-27}	kg
Planck constant	h =	6.626×10^{-34}	Js
Boltzmann constant	$k_{\rm B}$ =	1.381×10^{-23}	$J K^{-1}$
Stefan-Boltzmann constant	σ =	$5.670 imes 10^{-8}$	$W m^{-2} K^{-4}$
Gas constant	R =	8.314	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1}$
Avogadro constant	$N_{\rm A}$ =	6.022×10^{23}	mol^{-1}
Molar volume of ideal gas at STP	=	2.241×10^{-2}	m ³
One standard atmosphere	$P_0 =$	1.013×10^{5}	$N m^{-2}$

Useful expressions

$$\int_{-\infty}^{+\infty} x^2 e^{-\lambda x^2} = \frac{1}{2\lambda} \left(\frac{\pi}{\lambda}\right)^{\frac{1}{2}}$$
$$\int_{0}^{+\infty} x^n e^{-\gamma x} dx = \frac{n!}{\gamma^{n+1}}$$
$$\int_{-\infty}^{+\infty} e^{-(ax^2 + bx + c)} dx = \sqrt{\frac{\pi}{a}} e^{(b^2 - 4ac)/4a}$$
$$\sin \vartheta \sin \varphi = \frac{1}{2} \left(\cos\left(\vartheta - \varphi\right) - \cos\left(\vartheta + \varphi\right)\right)$$

For a one-dimensional harmonic oscillator of mass m and angular frequency ω

$$\begin{split} E_n &= \hbar \omega \bigg(n + \frac{1}{2} \bigg) \qquad n = 0, 1, 2, \dots \\ \hat{x} &= \sqrt{\frac{\hbar}{2m\omega}} \big(\hat{a} + \hat{a}^{\dagger} \big), \qquad \hat{a}^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle, \qquad \hat{a} |n\rangle = \sqrt{n} |n-1\rangle. \end{split}$$

SEE NEXT PAGE

SECTION A – Answer all parts of this section

1.1) Prove that, for any pair of linear operators \hat{A} and \hat{B} , $\begin{bmatrix} \hat{A}, \hat{B}^2 \end{bmatrix} = \begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix} \hat{B} + \hat{B} \begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix}$. Using $\begin{bmatrix} \hat{x}, \hat{p}_x \end{bmatrix} = i\hbar \hat{1}$, show that $\begin{bmatrix} \hat{x}, \hat{p}_x^2 \end{bmatrix} = 2i\hbar \hat{p}_x$.

[5 marks]

1.2) Calculate the expectation value and the uncertainty of the position operator \hat{x} for a particle in a state described by the normalized wavefunction

$$\Psi(x) = \left(\frac{a}{\pi}\right)^{\frac{1}{4}} e^{-ax^2/2} \qquad -\infty < x < +\infty$$

[6 marks]

1.3) Show that, for a harmonic oscillator of mass m and angular frequency ω with eigenstates $|n\rangle$,

$$\langle n | \hat{x}^2 | n \rangle = \frac{\hbar}{2m\omega} (2n+1) .$$

[8 marks]

1.4) Find the two eigenvalues and the corresponding eigenstates of the spin operator $\hat{S}_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}.$ If the system is in the state $|\psi\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, find the probabilities that a measurement of \hat{S}_{y}

yields each eigenvalue.

where *a* is a real positive constant.

[8 marks]

1.5) Consider two non-identical spin $\frac{1}{2}$ particles with Hamiltonian

$$\hat{H} = \frac{\varepsilon_0}{\hbar^2} \left(\hat{S}_1 + \hat{S}_2 \right)^2 + \frac{\varepsilon_0}{\hbar^2} \left(\hat{S}_{1z} + \hat{S}_{2z} \right)^2$$

where ε_0 is a constant with the dimensions of energy and \hat{S}_1 and \hat{S}_2 are the spin operators for the two particles with z-components \hat{S}_{1z} and \hat{S}_{2z} respectively. Find the energy levels and their degeneracies.

[7 marks]

1.6) Assuming Hund's rules apply, derive an expression for the spectroscopic terms of the ground state of fluorine (F, atomic number Z=9) and sodium (Na, Z=11).

[6 marks]

SEE NEXT PAGE

SECTION B – Answer TWO questions

2)

a) Consider a Hamiltonian \hat{H} with a discrete non-degenerate spectrum and ground state energy E_0 , and an arbitrary trial wavefunction $|\psi\rangle$, chosen to be normalized. Prove that

$$\left\langle \psi \left| \hat{H} \right| \psi \right\rangle \geq E_0$$
.

[8 marks]

b) A particle of mass *m* is moving in a one-dimensional triangular quantum well described by the potential energy

$$V(x) = \begin{cases} +\infty & x < 0 \\ V_0 x & x \ge 0 \end{cases}$$

i) For $x \ge 0$, use a trial wavefunction proportional to $x \exp(-\beta x)$, where β is a positive parameter that can be varied. Explain why this trial wavefunction is a plausible choice and normalize it.

[6 marks]

ii) Use the variational method to show that an upper limit for the ground state energy (as a function of the variational parameter β) for the particle in the potential V(x) is

$$\frac{\hbar^2}{2m}\beta^2 + \frac{3V_0}{2\beta}$$

[10 marks]

iii) Use the variational method to estimate the ground state energy for this particle.

[6 marks]

3) A two-dimensional isotropic harmonic oscillator of mass m and angular frequency ω has the Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + \frac{1}{2}m\omega^2 \left(\hat{x}^2 + \hat{y}^2 \right).$$

a) Show that the energy levels are given by

$$E_{n_x n_y} = \hbar \omega (n_x + n_y + 1);$$
 $n_x = 0, 1, 2, ...; n_y = 0, 1, 2, ...$

Find the energies and eigenstates for the ground and first excited states (in terms of the eigenstates $|n\rangle$ n = 0, 1, 2, ... of the one-dimensional harmonic oscillator). Show that the ground state is non-degenerate and that the first excited state is doubly-degenerate.

[7 marks]

b) Now add the following perturbation to the two-dimensional harmonic oscillator Hamiltonian:

$$\hat{H}_p = 2\lambda \hat{x}\hat{y}$$
.

i) Using first-order non-degenerate perturbation theory, show that the energy shift in the ground state due to \hat{H}_p is zero.

[8 marks]

ii) Calculate the matrix elements of \hat{H}_p between the eigenstates corresponding to the first excited state level. Hence, using first-order degenerate perturbation theory, show that the energy shifts in the first excited state due to \hat{H}_p are equal to $\pm \frac{\hbar\lambda}{m\omega}$.

[15 marks]

4) Let the eigenstates of the unperturbed Hamiltonian be denoted by $|\phi_k\rangle$ with eigenvalues $\hbar\omega_k$.

In first-order time-dependent perturbation theory, the amplitude $c_{k\to l}(t)$ for a transition due to the time-dependent perturbation $\lambda \hat{V}_1(t)$ from a state $|\phi_k\rangle$ to a state $|\phi_l\rangle$ is:

$$c_{k\to l}(t) = \frac{1}{i\hbar} \int_{t_0}^{t} \left\langle \phi_l \left| \lambda \hat{V}_1(\tilde{t}) \right| \phi_k \right\rangle e^{i(\omega_l - \omega_k)\tilde{t}} d\tilde{t} .$$

Consider a particle of mass *m* in a one-dimensional quantum well described by the potential energy

$$V(x) = \begin{cases} 0 & \text{if } 0 \le x \le L \\ +\infty & \text{otherwise} \end{cases}$$

The energy and the normalized eigenstate for the n^{th} excited state of the corresponding Hamiltonian are respectively

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}$$
 and $\phi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$

where n = 1, 2, 3, ... and $0 \le x \le L$.

In the range $0 \le x \le L$ the system is perturbed by the additional time-dependent term

$$\lambda \hat{V}_1(x,t) = \lambda \left(x - \frac{L}{2}\right) e^{-t^2/\tau^2}$$

a) Using first-order time-dependent perturbation theory show that the probability that a particle in the ground state (n=1) at $t = -\infty$ makes a transition to the first excited state (n=2) at $t = +\infty$ is equal to

$$\frac{256\lambda^2 L^2 \tau^2}{81\hbar^2 \pi^3} \exp\left(-\frac{9\pi^4 \hbar^2 \tau^2}{8m^2 L^4}\right) \,.$$

[18 marks]

b) Show that the transition probability from the ground state to the second excited state (n=3) is zero.

[8 marks]

c) What happens to the transition probability calculated in a) for a very slowly varying perturbation (i.e. $\tau \rightarrow +\infty$)?

[4 marks]