King's College London

University of London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CP3221 Spectroscopy and Quantum Mechanics

Examiner: Dr. C. MOLTENI

Summer 2008

Time allowed: THREE Hours

Candidates should answer all parts of SECTION A, and no more than TWO questions from SECTION B.

No credit will be given for answering a further question from SECTION B.

The approximate mark for each part of a question is indicated in square brackets.

Calculators may be used. The following models are permitted: Casio fx83 and Casio fx85.

DO NOT REMOVE THIS EXAM PAPER FROM THE EXAMINATION ROOM

Physical Constants

Permittivity of free space
Permeability of free space
Speed of light in free space
Gravitational constant
Elementary charge
Electron rest mass
Unified atomic mass unit
Proton rest mass
Neutron rest mass
Planck constant
Boltzmann constant
Stefan-Boltzmann constant
Gas constant
Avogadro constant
Molar volume of ideal gas at STP
One standard atmosphere

$$
\begin{aligned}
\varepsilon_{0} & =8.854 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
c & =2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
G & =6.673 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
e & =1.602 \times 10^{-19} \mathrm{C} \\
m_{\mathrm{e}} & =9.109 \times 10^{-31} \mathrm{~kg} \\
m_{\mathrm{u}} & =1.661 \times 10^{-27} \mathrm{~kg} \\
m_{\mathrm{p}} & =1.673 \times 10^{-27} \mathrm{~kg} \\
m_{\mathrm{n}} & =1.675 \times 10^{-27} \mathrm{~kg} \\
h & =6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}^{2} \\
k_{\mathrm{B}} & =1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
\sigma & =5.670 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \\
R & =8.314 \\
N_{\mathrm{A}} & =6.022 \times 10^{23} \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& =2.241 \times 10^{-2} \mathrm{~m}^{3} \\
P_{0} & =1.013 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}
\end{aligned}
$$

Useful expressions
$\int_{-\infty}^{+\infty} x^{2} e^{-\lambda x^{2}}=\frac{1}{2 \lambda}\left(\frac{\pi}{\lambda}\right)^{1 / 2}$
$\int_{0}^{+\infty} x^{n} e^{-\gamma x} d x=\frac{n!}{\gamma^{n+1}}$
$\int_{-\infty}^{+\infty} e^{-\left(a x^{2}+b x+c\right)} d x=\sqrt{\frac{\pi}{a}} e^{\left(b^{2}-4 a c\right) / 4 a}$
$\sin \vartheta \sin \varphi=\frac{1}{2}(\cos (\vartheta-\varphi)-\cos (\vartheta+\varphi))$

For a one-dimensional harmonic oscillator of mass m and angular frequency ω $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right) \quad n=0,1,2, \ldots$
$\hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right), \quad \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad \hat{a}|n\rangle=\sqrt{n}|n-1\rangle$.

SECTION A - Answer all parts of this section

1.1) Prove that, for any pair of linear operators \hat{A} and $\hat{B},\left[\hat{A}, \hat{B}^{2}\right]=[\hat{A}, \hat{B}] \hat{B}+\hat{B}[\hat{A}, \hat{B}]$. Using $\left[\hat{x}, \hat{p}_{x}\right]=i \hbar \hat{1}$, show that $\left[\hat{x}, \hat{p}_{x}^{2}\right]=2 i \hbar \hat{p}_{x}$.
1.2) Calculate the expectation value and the uncertainty of the position operator \hat{x} for a particle in a state described by the normalized wavefunction

$$
\psi(x)=\left(\frac{a}{\pi}\right)^{1 / 4} e^{-a x^{2} / 2} \quad-\infty<x<+\infty
$$

where a is a real positive constant.
[6 marks]
1.3) Show that, for a harmonic oscillator of mass m and angular frequency ω with eigenstates $|n\rangle$,

$$
\langle n| \hat{x}^{2}|n\rangle=\frac{\hbar}{2 m \omega}(2 n+1) .
$$

1.4) Find the two eigenvalues and the corresponding eigenstates of the spin operator

$$
\hat{S}_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

If the system is in the state $|\psi\rangle=\binom{1}{0}$, find the probabilities that a measurement of \hat{S}_{y} yields each eigenvalue.
1.5) Consider two non-identical spin $\frac{1}{2}$ particles with Hamiltonian

$$
\hat{H}=\frac{\varepsilon_{0}}{\hbar^{2}}\left(\hat{S}_{1}+\hat{S}_{2}\right)^{2}+\frac{\varepsilon_{0}}{\hbar^{2}}\left(\hat{S}_{1 z}+\hat{S}_{2 z}\right)^{2}
$$

where ε_{0} is a constant with the dimensions of energy and \hat{S}_{1} and \hat{S}_{2} are the spin operators for the two particles with z-components $\hat{S}_{1 z}$ and $\hat{S}_{2 z}$ respectively. Find the energy levels and their degeneracies.
1.6) Assuming Hund's rules apply, derive an expression for the spectroscopic terms of the ground state of fluorine (F , atomic number $Z=9$) and sodium ($\mathrm{Na}, Z=11$).

SECTION B - Answer TWO questions

2)

a) Consider a Hamiltonian \hat{H} with a discrete non-degenerate spectrum and ground state energy E_{0}, and an arbitrary trial wavefunction $|\psi\rangle$, chosen to be normalized. Prove that

$$
\langle\psi| \hat{H}|\psi\rangle \geq E_{0} .
$$

b) A particle of mass m is moving in a one-dimensional triangular quantum well described by the potential energy

$$
V(x)= \begin{cases}+\infty & x<0 \\ V_{0} x & x \geq 0\end{cases}
$$

i) For $x \geq 0$, use a trial wavefunction proportional to $x \exp (-\beta x)$, where β is a positive parameter that can be varied. Explain why this trial wavefunction is a plausible choice and normalize it.
ii) Use the variational method to show that an upper limit for the ground state energy (as a function of the variational parameter β) for the particle in the potential $V(x)$ is

$$
\frac{\hbar^{2}}{2 m} \beta^{2}+\frac{3 V_{0}}{2 \beta}
$$

iii) Use the variational method to estimate the ground state energy for this particle.
3) A two-dimensional isotropic harmonic oscillator of mass m and angular frequency ω has the Hamiltonian

$$
\hat{H}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\frac{1}{2} m \omega^{2}\left(\hat{x}^{2}+\hat{y}^{2}\right) .
$$

a) Show that the energy levels are given by

$$
E_{n_{x} n_{y}}=\hbar \omega\left(n_{x}+n_{y}+1\right) ; \quad n_{x}=0,1,2, \ldots ; n_{y}=0,1,2, \ldots
$$

Find the energies and eigenstates for the ground and first excited states (in terms of the eigenstates $|n\rangle \quad n=0,1,2, \ldots$ of the one-dimensional harmonic oscillator). Show that the ground state is non-degenerate and that the first excited state is doubly-degenerate.
b) Now add the following perturbation to the two-dimensional harmonic oscillator Hamiltonian:

$$
\hat{H}_{p}=2 \lambda \hat{x} \hat{y} .
$$

i) Using first-order non-degenerate perturbation theory, show that the energy shift in the ground state due to \hat{H}_{p} is zero.
ii) Calculate the matrix elements of \hat{H}_{p} between the eigenstates corresponding to the first excited state level. Hence, using first-order degenerate perturbation theory, show that the energy shifts in the first excited state due to \hat{H}_{p} are equal to $\pm \frac{\hbar \lambda}{m \omega}$.
4) Let the eigenstates of the unperturbed Hamiltonian be denoted by $\left|\phi_{k}\right\rangle$ with eigenvalues $\hbar \omega_{k}$.
In first-order time-dependent perturbation theory, the amplitude $c_{k \rightarrow l}(t)$ for a transition due to the time-dependent perturbation $\lambda \hat{V}_{1}(t)$ from a state $\left|\phi_{k}\right\rangle$ to a state $\left|\phi_{l}\right\rangle$ is:

$$
c_{k \rightarrow l}(t)=\frac{1}{i \hbar} \int_{t_{0}}^{t}\left\langle\phi_{l}\right| \lambda \hat{V}_{1}(\tilde{t})\left|\phi_{k}\right\rangle e^{i\left(\omega_{l}-\omega_{k}\right) \tilde{t}} d \tilde{t}
$$

Consider a particle of mass m in a one-dimensional quantum well described by the potential energy

$$
V(x)=\left\{\begin{array}{lr}
0 & \text { if } 0 \leq x \leq L \\
+\infty & \text { otherwise }
\end{array}\right.
$$

The energy and the normalized eigenstate for the $n^{\text {th }}$ excited state of the corresponding Hamiltonian are respectively

$$
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}} \text { and } \phi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)
$$

where $n=1,2,3, \ldots$ and $0 \leq x \leq L$.
In the range $0 \leq x \leq L$ the system is perturbed by the additional time-dependent term

$$
\lambda \hat{V}_{1}(x, t)=\lambda\left(x-\frac{L}{2}\right) e^{-t^{2} / \tau^{2}}
$$

a) Using first-order time-dependent perturbation theory show that the probability that a particle in the ground state $(n=1)$ at $t=-\infty$ makes a transition to the first excited state $(n=2)$ at $t=+\infty$ is equal to

$$
\frac{256 \lambda^{2} L^{2} \tau^{2}}{81 \hbar^{2} \pi^{3}} \exp \left(-\frac{9 \pi^{4} \hbar^{2} \tau^{2}}{8 m^{2} L^{4}}\right)
$$

[18 marks]
b) Show that the transition probability from the ground state to the second excited state $(n=3)$ is zero.
c) What happens to the transition probability calculated in a) for a very slowly varying perturbation (i.e. $\tau \rightarrow+\infty$)?

