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Physical Constants 
 
Permittivity of free space ε 0 = 8.854 × 10−12 F m−1 
Permeability of free space μ 0 = 4 π × 10−7 H m−1 
Speed of light in free space c = 2.998 × 108  m s−1 
Gravitational constant G = 6.673 × 10−11 N m2 kg−2 
Elementary charge e = 1.602 × 10−19  C 
Electron rest mass me = 9.109 × 10−31  kg 
Unified atomic mass unit mu = 1.661 × 10−27  kg 
Proton rest mass mp = 1.673 × 10−27  kg 
Neutron rest mass mn = 1.675 × 10−27  kg 
Planck constant h = 6.626 × 10−34  J s 
Boltzmann constant kB = 1.381 × 10−23  J K−1 
Stefan-Boltzmann constant σ = 5.670 × 10−8  W m−2 K−4 
Gas constant R = 8.314  J mol−1 K−1 
Avogadro constant NA = 6.022 × 1023 mol−1 
Molar volume of ideal gas at STP  = 2.241 × 10−2 m3  
One standard atmosphere P0 = 1.013 × 105 N m−2 

 
  
  

 
The  z-component of the orbital angular momentum operator L̂ can be expressed in terms of 
the components of the position and momentum operators as     
 

ˆ ˆ ˆ ˆ ˆz y xL xp yp= − . 

 
 
Two operators Â  and B̂  anticommute if ˆ ˆˆ ˆ 0AB BA+ = .
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SECTION  A − Answer all SIX parts of this section 
 
1.1) An operator Â , corresponding to an observable A , has two normalized eigenfunctions 

1φ  and 2φ , with distinct eigenvalues 1a  and 2a . An operator B̂ , corresponding to an 
observable B , has normalized eigenfunctions 1χ and 2χ , with distinct eigenvalues 

1b and 2b . The eigenfunctions are related by  
 
  

     . 
 

A  is measured and the value 1a  is obtained. If B is then measured and then A again, 
show that the probability of obtaining 1a  a second time is 97/169. 

[7 marks] 
 

1.2) A one-dimensional harmonic oscillator with angular frequencyω  is known to have 

energy eigenvalues equal to 1
2

n ω⎛ ⎞′ +⎜ ⎟
⎝ ⎠

, where n′  is zero or a positive integer. The 

Hamiltonian of a three-dimensional isotropic harmonic oscillator with mass m and 
angular frequency ω  has the form 

 
 
 
By expressing H as a sum of three similar Hamiltonians xH , yH and zH  for one-
dimensional harmonic oscillators, show that the energy eigenvalues are equal to 

3
2

n ω⎛ ⎞+⎜ ⎟
⎝ ⎠

, where n is zero or a positive integer. Show, moreover, that the 

degeneracies of the three lowest energy eigenvalues are 1, 3 and 6. 
[7 marks] 

 
1.3) Show that the matrices 
 

1 2 3

0 1 0 0 1 0 1 0 0
1 0 1   ,  1 0 1    ,  0 0 0

2 2
0 1 0 0 1 0 0 0 1

iJ J J
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

satisfy the commutation relation of angular momentum 
 

[ ]1 2 3,J J i J=  

and that 

2 2 2 2
1 2 3

1 0 0
2 0 1 0

0 0 1
J J J

⎛ ⎞
⎜ ⎟+ + = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 . 

[7 marks] 
 

1 2 1 2
1 2

2 3 3 2       
13 13

χ χ χ χφ φ+ −
= =

( )
2 2 2 2

2 2 2 2
2 2 2

1
2 2

H m x y z
m x y z

ω
⎛ ⎞∂ ∂ ∂

= − + + + + +⎜ ⎟∂ ∂ ∂⎝ ⎠
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1.4) Define the particle exchange operator 12P̂  that exchanges particles in a two-particle 

wavefunction ( )1,2ψ  and demonstrate that 2
12

ˆˆ 1P = . Find the eigenvalues of 12P̂ .  

[7 marks] 
 
1.5) The atomic number of titanium (Ti) is Z=22. Write down the ground state electronic 

configuration of titanium and determine the quantum number S for the total electronic 
spin of the atom, using the appropriate Hund’s rule. 

[7 marks] 
 

1.6) Sketch the form of the LCAO molecular orbitals which can be obtained by combining 
two 2p atomic orbitals, ordering them by ascending value of the associated energy 
levels. Assume that lower–lying levels associated with molecular orbitals obtained 
from 1s and 2s electrons and not considered here do not influence this ordering.  

[7 marks] 
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SECTION  B − Answer TWO questions 
   
2)   A spinless particle of mass m is moving in a one-dimensional infinite potential well of 

length 2L, with walls at x=0 and x=2L, described by the potential: 
 

( )
0        0 2

       otherwise
≤ ≤⎧

= ⎨+∞⎩

x L
V x  

 
a) Write down the time-independent Schroedinger equation and show that the 

energy of the nth excited states is  
2 2

2
28nE n

mL
π

=  , 

where n is a positive integer.  
Find the corresponding normalized wavefunction. 

[10 marks] 
 

b) Calculate to first order perturbation theory the energy of the nth excited state 
when the bottom of the potential well is modified by the following two 
perturbations:  

(α) ( )1 0 sin
2P

xV x V
L

πλ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

  

and  
(β) ( ) ( )2 0PV x V x Lλ δ= −  
where 1λ . 

 [20 marks] 
 
 [The following expression might be useful: 
 

 ( ) ( ) ( )
( )

( )
( )

cos cos
cos sin  + constant       

2 2
m n x m n x

nx mx dx m n
m n m n
− +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= − − ≠ ±
− +∫  

 
  where m and n are integers.] 
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3a)  Explain the variational method and its use in the evaluation of the ground state energy 

of a system. Write down the variational inequality for the ground state energy E0  for a 
system with Hamiltonian Ĥ . 

[10 marks] 
 

   
b) A particle of mass m is moving in the potential 

( )
2 21      0

2
              0

m x x
V x

x

ω⎧ >⎪= ⎨
⎪+∞ ≤⎩

 

i) Consider a trial wavefunction proportional to ( )2expx xβ−  for 0x > . β is a 

positive parameter that can be varied. Explain why this trial wavefunction is a 
plausible choice and normalize it.  

ii) Use the variational method to show that an upper limit for the ground state 
energy (as a function of the variable parameter β) for the particle moving in 
the potential ( )V x  is  

2 23 3
2 8

m
m

ωβ
β

+  

 
iii) Use the variational method to estimate the ground state energy for this 

particle. 
iv) Sketch the corresponding wavefunction and determine the most probable 

location of the particle when it is in this state. 
 

[20 marks] 
 
[ The following expression might be useful: 
      

( )
( )

22
1

0

1 3 5 2 1         >0
2

n x
nn

nx e dxγ π γ
γγ

+∞
−

+

⋅ ⋅ ⋅ ⋅ ⋅ −
=∫ .] 

 
 
 
 . 
 

 
 
     

 
 

 



  CP3221 

 7 FINAL PAGE 

4) For many applications, alkali atoms can be considered to consist of one (valence) 
electron interacting with an effective central potential Veff(r). This potential is 
generated by the atomic nucleus and the remaining electrons which are supposed to be 
“frozen” in their core orbitals. 

 
a) Write down the Hamiltonian H of an alkali atom in the presence of an external 

electric field E oriented along the z axis, i.e zE=E e , where ze  is the unit 
vector along the z direction. Assume that Veff(r) is known. 

                     [7 marks] 
 

b) Determine whether H is symmetric with respect to inversion of each of the 
Cartesian coordinates.  Show that the term in the Hamiltonian associated with 
the external electric field anticommutes with the parity operator.                                               

                                                                                                                             [8 marks] 
 

c)  Show that within first-order perturbation theory the energy levels of the atom 
are not influenced by the interaction with the external field.  
[Hint:  ignore the electron spin and consider the generic atomic state nlmψ with 
quantum numbers n, l and m. Use the fact that the perturbation term and the 
parity operator anticommute and the fact that nlmψ  are parity eigenstates with 

eigenvalues ( )1 l− .] 
[7 marks] 

  
d) Consider now the exact energy spectrum of an alkali atom in an electric field 

Show that the eigenstates of H are still classifiable as eigenstates of the 
angular momentum  component operator Lz . 
[Hint: consider the commutation relation between H and Lz .]            

 [8 marks] 
 


