King's College London

UNIVERSITY OF LONDON

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CP/MP36 Medical Imaging and Measurement

Summer 2003

Time allowed: THREE Hours

Candidates must answer SIX parts of SECTION A and TWO questions from SECTION B

The approximate mark for each part of a question is indicated in square brackets

You must not use your own calculator for this paper Where necessary, a College Calculator will have been supplied

TURN OVER WHEN INSTRUCTED 2003 © King's College London

SECTION A - Answer SIX parts of this section.

1.1) An imaging system has a point spread function expressible as P(x, y) = A for $|x| \le x_0$, $|y| \le y_0$ = 0 otherwise where A is a constant. Calculate the modulation transfer function for this system. [7 marks]

1.2) Describe a "first generation" X-ray system for medical computerised tomography. List those features of X-radiation, and its propagation in human tissues, that make it suitable for this type of imaging.

[7 marks]

1.3) Obtain an expression for the intensity of the ultrasound wave $p(x,t) = A \sin(2\pi \{ft - x/\lambda\})$, where A is the (constant) amplitude, f is the frequency and λ is the wavelength of the wave.

[7 marks]

1.4) Describe how, in an appropriate magnetic resonance system, the free induction decay (FID) of the magnetisation of a tissue *slice* through a patient can be measured.

[7 marks]

1.5) Discuss why Tc-99m is a suitable radionuclide to use for single photon emission tomography (SPECT) scanning. Also, indicate any disadvantages it has for medical imaging?

[7 marks]

- 1.6) A narrow, monochromatic, beam of X-rays is incident on a thin layer of material, consisting of *N* atoms per cm³. The interaction of each atom with the photons is expressed by the total cross section, σ cm². Derive expressions for the material's linear attenuation coefficient and mass attenuation coefficient in terms of *N* and σ . [7 marks]
- 1.7) Calculate the projection (onto any direction in the plane of r) of an annular shaped disk with density,

 $D(\mathbf{r}) = C \quad \text{for } a \le |\mathbf{r}| \le b$ = 0 otherwise where C is a constant.

[7 marks]

1.8) Sketch and name three types of collimator, other than the pinhole collimator, used with gamma cameras and indicate how the image relates to the object.

[7 marks]

SEE NEXT PAGE

CP\MP36

SECTION B - answer TWO questions

2) a) Plane waves of ultrasound are incident normally at a planar interface between with different characteristic acoustic impedances. Derive expressions for the amplitude reflection and transmission coefficients of these waves	two media ultrasound
amplitude reflection and transmission coefficients of these waves.	[8 marks]
 b) A 5 MHz ultrasound real-time pulse-echo B-mode system is operated with a prepetition frequency (PRF) of 2.5 kHz. i) To what donth in soft tissue can images he formed? 	pulse
ii) What is the maximum frame rate if 125 line images are desired?	[4 marks]
iii) If the system is operated in Doppler mode, what is the maximum ('line-of-sig speed of movement that can be detected within the imaged region?	[2 marks] ght')
Assume that the speed of sound in soft tissues is 1500 m s ⁻¹ .	[6 marks]
c) Briefly describe the processes of envelope detection, time gain compensation, compression and (line) interpolation. State why these processes are incorpora medical ultrasound B-mode image formation.	ted in
	[10 marks]
 3) a) A single photon emission tomographic (SPECT) system is used to image a bounded region with uniform (radio-) activity enclosed within a patient containing no other activity. i) Assume that the linear attenuation coefficient for u photons of the appropriate energy. 	
i) Assume that the linear attenuation coefficient for γ - photons of the appropriate energy is constant everywhere within the patient to develop an approximate attenuation correction procedure to be applied to the measured projection data.	
ii) What additional information is needed in order to carry out the attenuation c and how would it be obtained in practice?	[15 marks] orrection,
and now would it be obtained in practice.	[3 marks]
 b) The point spread function (PSF) of the imaging system in a) is measured to be shape PSF(x,y) = A. exp(-a x). exp(-a y) with a and A constants. 	e of the
Calculate: i) the line spread function (LSF) of the system	
ii) the edge spread function (ESF) of the system	[4 marks]
iii) the phase transfer function (PTF) of the system	[5 marks]
	[3 marks]

CP\MP36

4) a)	A proton is placed in a constant magnetic field, B , with its magnetic moment, μ , initially at an angle, ϕ , to the field.
i)	Show that μ precesses about the direction of B .
,	[8 marks]
ii)	Obtain an expression for the magnitude of the Larmor frequency.
	[10 marks]
	Hint: Use classical arguments and note the following vector identity, $(a \times b) \times c = b(c \cdot a) - a(b \cdot c)$
b) Derive an expression for the fractions of ¹ H nuclei in the upper and lower energy states, in a constant magnetic field of magnitude <i>B</i> tesla at temperature T ⁰ C.	
	[9 marks]
c)	In a magnetic resonance spectrum, the separation of the main spectral peak due to water and the peak due to lipids is approximately 3 ppm. If the static magnetic field strength of a magnetic resonance imaging unit is 1.5 tesla, what is the frequency shift

[3 marks]

5) a) State the Fourier Slice Theorem and explicitly validate it for any projection of a two dimensional density function, D(x, y).

in hydrogen between water and lipid?

[10 marks]

b) An X-ray beam is generated by a diagnostic mammography unit operating at a peak voltage of *V* kV. Obtain an expression for the maximum kinetic energy, *K*, of a recoil electron in a Compton event produced by these X-rays. Show that *K* is proportional to V^2 , to reasonable approximation. Note that the rest mass of an electron is ~ 500 keV.

[10 marks]

c) Describe how the design of an X-ray mammography unit is determined by the physics of the photon / tissue interaction.

[10 marks]