King's College London

University of London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CPMP25 Radiation Physics

Summer 2003

Time allowed: THREE Hours

Candidates must answer SIX parts of SECTION A, and TWO questions from SECTION B.

The approximate mark for each part of a question is indicated in square brackets.

You must not use your own calculator for this paper.
Where necessary, a College calculator will have been supplied.

Electronic charge
$e=1.602 \times 10^{-19} \mathrm{C}$
Planck constant
$h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in a vacuum
$c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rest mass of the electron
Mass of the proton
Mass of an α-particle
Atomic mass unit
$m_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg}$
$m_{\mathrm{p}}=1.673 \times 10^{-27} \mathrm{~kg}$
$m_{\alpha}=6.645 \times 10^{-27} \mathrm{~kg}$
$m_{\mathrm{u}}=1.661 \times 10^{-27} \mathrm{~kg}$

SECTION A - Answer SIX parts of this section

1.1) A calibration lamp has a sharp emission line at 546.07 nm in air. Calculate to 5 significant figures) the energy of this line in eV and the frequency in Hz . You may take the refractive index of air to be 1.00028 .
1.2) A diatomic molecule has atoms with masses m_{1} and m_{2}. The average separation between the atoms is r. Show that the moment of inertia about the centre of mass is

$$
I=\frac{m_{1} m_{2} r^{2}}{m_{1}+m_{2}}
$$

[7 marks]
1.3) The wavelengths of the copper K_{α} and copper $\mathrm{K}_{\beta} \mathrm{X}$-rays are 0.1542 nm and 0.1392 nm , respectively. Stating any assumptions that you make, use this information to estimate the wavelength of the copper L_{α} line.
1.4) Describe what is meant by a population inversion, and explain why this is necessary for the operation of a laser. Explain briefly, with the aid of a sketch, how population inversion is achieved in a three-level system.
1.5) Describe photodynamic therapy and outline briefly the principles involved.
1.6) A gamma ray, with energy $h \nu$, scattered through an angle θ by an electron, gives that electron an energy

$$
E=h \nu\left[\frac{\alpha(1-\cos \theta)}{1+\alpha(1-\cos \theta)}\right] \quad \text { where } \quad \alpha=\frac{h \nu}{m_{\mathrm{e}} c^{2}} .
$$

Show that the maximum energy that can be transferred to the electron is

$$
\frac{2 h v}{\left(m_{e} c^{2} / h v\right)+2} .
$$

Calculate this energy for $h \nu=1.33 \mathrm{MeV}$.
1.7) A non-relativistic particle with mass m_{1} and kinetic energy Q_{1}, collides with a stationary particle having mass m_{2}. It transfers to that particle an energy

$$
Q_{2}=4 \frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}} Q_{1} .
$$

Show that, for an α-particle colliding with a stationary electron,

$$
Q_{e} \approx \frac{4 Q_{\mathrm{a}} m_{\mathrm{e}}}{m_{\mathrm{a}}} .
$$

Hence calculate the minimum number of collisions a $4-\mathrm{MeV} \quad \alpha$-particle must make with electrons in order to reduce its energy to 1.5 MeV . State any assumptions involved.
[7 marks]
1.8) Explain the terms exposure, absorbed dose and dose equivalent used in radiation dosimetry, giving the units in each case.

SECTION B - Answer TWO questions

2) For a diatomic molecule, treated as a vibrating rotator, the energy levels are given by

$$
E_{V, J}=(V+1 / 2) \hbar \sqrt{\frac{k}{\mu}}+\frac{J(J+1) \hbar^{2}}{2 I}
$$

where k is the "spring constant", μ is the reduced mass of the molecule and I, the moment of inertia, is given by $I=\mu r^{2}$ where r is the separation between the atoms. The vibration is assumed to be simple harmonic.
a) Define the terms V and J, and state the selection rules for these parameters.
b) Illustrate the first few allowed transitions on an energy level diagram. How are energies in Joules converted to the spectroscopic units of cm^{-1} ?
c) Sketch the absorption band for a typical diatomic molecule, and identify the P and R branches. (A derivation of the relative intensities of the transitions is not required.)
d) Show that, near the centre of the band, the spacing of the rotational lines in the spectrum is $2 B$, where $B=\frac{\hbar^{2}}{2 I}$.
e) Chlorine has two stable isotopes, ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$. The centre of the fundamental vibrationrotation absorption band for hydrogen chloride $\mathrm{H}^{35} \mathrm{Cl}$ (i.e. incorporating the light isotope of Cl) is measured as $2885.5 \mathrm{~cm}^{-1}$. Assuming that HCl behaves as a harmonic oscillator, show that, for $\mathrm{H}^{37} \mathrm{Cl}$ the centre of the band will be shifted approximately $2.17 \mathrm{~cm}^{-1}$ to lower energy.
f) The bond length for HCl is 0.1274 nm . Use this information to calculate the average separation (in cm^{-1}) of the first few peaks in the P or R branch of the absorption spectrum for $\mathrm{H}^{35} \mathrm{Cl}$.
3) a) Discuss the three main processes by which gamma rays lose energy on passing through an absorbing medium.
b) For each case, sketch a curve showing how the probability of the process varies with the energy of the gamma ray.
c) Describe, in addition, the processes which produce (i) Auger electrons and (ii) gamma rays with an energy of 0.511 MeV .
d) What thickness of concrete is needed to reduce the number of $500-\mathrm{keV}$ gamma rays in a well-collimated beam to 1% of the incident number? For concrete the density (ρ) is $2.35 \times$ $10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ and the mass attenuation coefficient (μ / ρ), for photons of energy 500 keV , is $0.0089 \mathrm{~m}^{2} \mathrm{~kg}^{-1}$.
[4 marks]
4) a) Draw a diagram illustrating the important components in a $\mathrm{He} / \mathrm{Ne}$ laser, and explain the function of each.
b) Sketch an energy level diagram which indicates the important transitions leading to laser emission at 632.8 nm .
[4 marks]
c) Explain, with sketches, what is meant by the $\mathrm{TEM}_{00}, \mathrm{TEM}_{01}$, and TEM_{10} modes and indicate why the TEM_{00} mode is preferred for many applications.
d) Explain what is meant by the gain bandwidth of the laser. A certain $\mathrm{He} / \mathrm{Ne}$ laser has mirrors separated by 40 cm . The full width at half maximum of the gain-bandwidth curve is 2 $\times 10^{-3} \mathrm{~nm}$. Calculate the number of longitudinal modes in this wavelength interval. Calculate also, in MHz , the frequency spacing of the modes.
e) In medical applications the $\mathrm{He} / \mathrm{Ne}$ laser might be used in conjunction with $\mathrm{Nd}-\mathrm{YAG}$ or CO_{2} lasers. Explain why.
5) a) Explain what is meant by a survival curve in the field of radiation therapy. Data for certain groups of cells irradiated with neutrons follow the single-hit survival curve, and with Xrays follow the multi-target single-hit survival curve. Sketch the forms of these survival curves and derive expressions for the surviving fraction as a function of dose in each case.
[12 marks]
b) Show that, for large doses, the number of cells N surviving after a dose D of X-rays is $N=$ $N_{0} n \exp \left(-D / D_{0}\right)$, where N_{0} is the initial number of cells. Explain the physical significances of the parameters n and D_{0}.
[4 marks]
c) You may assume that, after irradiation, cell survival follows the Poisson distribution

$$
P_{m}=\frac{a^{m} e^{-a}}{m!} .
$$

Define the terms in this expression, and show how it is simplified in the case of no cells surviving.
[4 marks]
d) A large number of batches of cell cultures were irradiated with X-rays and it was found that, on average, a fraction of 10^{-3} survived after a dose of 16.01 Gy and a fraction 10^{-5} survived after a dose of 25.22 Gy . The overall behaviour could be described using the multi-target single-hit survival curve.

The same energy X-rays were used to irradiate a tumour comprising 10^{9} similar cells. Calculate the probability of destroying this tumour after a dose of 48 Gy .

