King's College London

UNIVERSITY OF LONDON

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.
B.Sc. EXAMINATION

CP/MP10 Introductory Medical Physics

Summer 2000

Time allowed: THREE Hours

Candidates must answer SIX parts of SECTION A, ONE question from SECTION B and ONE question from SECTION C.

The approximate mark for each part of a question is indicated in square brackets.

Separate answer books must be used for each Section of the paper.

You must not use your own calculator for this paper. Where necessary, a College Calculator will have been supplied.

TURN OVER WHEN INSTRUCTED 2000©King's College London

Speed of light in a vacuum
Planck constant
$c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Charge of an electron
$h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$e=-1.602 \times 10^{-19} \mathrm{C}$

SECTION A - Answer SIX parts of this section

1.1) Describe briefly how blood pressure can be measured non-invasively. If the normal femoral artery is insonated using a 5 MHz continuous wave Doppler velocimeter, what range of Doppler-shift frequencies might be produced? (Assume a probe/vessel angle of 30°.)
[7 marks]
1.2) What is the name given to the electrical signal which drives the heart? What are the principal features of this signal and its magnitude measured at the skin?
[7 marks]
1.3) Describe, with the aid of simple diagrams, the essential features of the normal gait cycle. How might the pattern of gait be affected in a unilateral above-knee amputee wearing a prosthesis?
1.4) Describe, with the aid of diagrams, one electrical method which can be used for the measurement of temperature. List the advantages and disadvantages of the method you have described.
1.5) Give a brief explanation of the following terms and state, where appropriate, their units: absorbed dose; dose equivalent; relative biological effectiveness; the ALARA principle.
1.6) The minimum wavelength of the x-rays emitted from a radiographic device is 0.0124 nm . At what peak kilovoltage is the device being operated? What is the minimum frequency of the x-rays emitted?
[7 marks]
1.7) Derive an expression for the effective half-life of a radioactive substance in the body, in terms of its physical and biological half-lives. If the physical half-life of the substance is known to be 6 hrs, and its effective half-life is measured to be 240 min , what is its biological half-life?
1.8) An ultrasound wave is incident normally on a planar interface between two tissues. The intensity of the reflected wave is measured to be 6 dB less than that of the incident wave. What is the amplitude reflection coefficient of the interface?

SECTION B - Answer ONE question

2) With the aid of diagrams, describe the structure and function of the human ear.
[14 marks]
Define the term acoustic impedance and show how it may be used to calculate the intensity reflected at an interface between two materials.

The sound emitted by the earpiece of a pair of headphones has an intensity of $2 \times 10^{-3} \mathrm{~W} \mathrm{~m}^{-2}$ and travels through a thick layer of protective foam before it reaches the ear. Some of the sound is reflected by the single air/foam interface. If the velocity of sound in air is $331 \mathrm{~m} \mathrm{~s}^{-1}$ and that in foam is $150 \mathrm{~m} \mathrm{~s}^{-1}$, with the respective densities being $1.2 \mathrm{~kg} \mathrm{~m}^{-3}$ and $10 \mathrm{~kg} \mathrm{~m}^{-3}$, calculate the intensity of the sound which is transmitted to the ear. Determine, in decibels, the difference between the emitted sound intensity and that reaching the ear.
[10 marks]
3) Name the five parameters associated with the assessment of lung function, giving typical values of each for a healthy lung.
[10 marks]
Sketch the relationship between oxygen pressure and the percentage of haemaglobin saturated with oxygen. How is this curve affected by the pressure of carbon dioxide present?

In the assessment of lung function, a pneumotachograph, which incorporates a differential pressure transducer, is used. Sketch a simple electrical circuit incorporating the transducer with which respiratory flow could be measured. When measuring a flow of 5 litre s^{-1}, the resistance of a strain gauge bonded to the diaphragm of the pressure transducer changes by 100Ω from its resting value of $1 \mathrm{k} \Omega$. Show, with appropriate explanation and stating any assumptions made, how a voltage output of about 2.5 V could be produced for this flow.
[12 marks]

SECTION C - Answer ONE question

4) (a) Draw a labelled diagram showing the design of a modern diagnostic x-ray tube. Indicate those features that are specifically introduced for the radiation protection of the patient and the operator.
(b) List the methods used to control external radiation hazards in a medical environment, with respect to the protection of both patients and occupationally-exposed persons.
(c) An x-ray machine is operated at 120 kVp . It is found that the exposure rate at a distance of 100 cm from the tube is $75 \mathrm{mR} / \mathrm{min}$. What is the exposure suffered by a person who spends 10 minutes in the beam while standing at a distance of 3 m from the tube?
(d) A narrow beam containing 2×10^{6} mono-energetic photons is reduced to 1×10^{6} photons by a copper slab 1 cm thick. What is the total linear attenuation coefficient of the copper slab for these photons?
5) (a) Describe the main characteristics of the propagation and interaction of (longitudinal) ultrasound waves in human (soft) tissues, and indicate one way in which each characteristic is exploited in medical applications.
[12 marks]
(b) Draw a labelled diagram illustrating the construction of a portable scintillation device for radiation monitoring.
[10 marks]
(c) 1000 Bq of a radioactive pharmaceutical, with a half-life of 6 hours, is injected into a patient's blood-stream at $11.00 \mathrm{a} . \mathrm{m}$. The next day, at $2.00 \mathrm{p} . \mathrm{m}$. , a 10 ml blood sample is taken, and is found to have an activity of 0.9 Bq . Estimate the patient's blood volume. Clearly state the approximations made in your calculation.
