King's College London

University of London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

M.Sci. EXAMINATION

CP4750 Image Capture and Sensor Technology

Summer 2004

Time allowed: 3 Hours

Candidates must answer THREE questions. No credit will be given for answering further questions.

The approximate mark for each part of a question is indicated in square brackets.

You must not use your own calculator for this paper. Where necessary, a College calculator will have been supplied.

TURN OVER WHEN INSTRUCTED 2004 ©King's College London

Physical Constants

Permittivity of free space	$\epsilon_0 =$	8.854×10^{-12}	$F m^{-1}$
Permeability of free space	$\mu_0 =$	$4\pi imes 10^{-7}$	${ m H}{ m m}^{-1}$
Speed of light in free space	c ==	2.998×10^8	${ m ms^{-1}}$
Gravitational constant	G =	6.673×10^{-11}	$ m Nm^2kg^{-2}$
Elementary charge	e =	1.602×10^{-19}	\mathbf{C}
Electron rest mass	$m_{ m e} =$	9.109×10^{-31}	kg
Unified atomic mass unit	$m_{\mathrm{u}} =$	1.661×10^{-27}	kg
Proton rest mass	$m_{ m p} =$	1.673×10^{-27}	kg
Neutron rest mass	$m_{\mathrm{n}} =$	1.675×10^{-27}	kg
Planck constant	h =	6.626×10^{-34}	J s
Boltzmann constant	$k_{\mathrm{B}} =$	1.381×10^{-23}	$ m JK^{-1}$
Stefan-Boltzmann constant	$\sigma =$	5.670×10^{-8}	${ m W}{ m m}^{-2}{ m K}^{-4}$
Gas constant	R =	8.314	$J\mathrm{mol^{-1}}K^{-1}$
Avogadro constant	$N_{\rm A} =$	6.022×10^{23}	mol^{-1}
Molar volume of ideal gas at STP	=	2.241×10^{-2}	m^3
One standard atmosphere	$P_0 =$	1.013×10^5	${ m N~m^{-2}}$

You may assume that
$$\int_0^\infty rac{dx}{1+x^2} = rac{\pi}{2}$$

Answer THREE questions

1) With the aid of a suitably labeled diagram, explain the principles of operation of a vacuum photodiode detector, stating the main advantages and disadvantages of this type of detection device.

[5 marks]

A vacuum photodiode is required to register the arrival of a pulse of laser radiation. The electrodes of the vacuum photodiode have an area of 0.5 cm^2 and a separation of 1.0 cm. Calculate the response time of the device, τ , if the voltage applied to it is 300 V.

[4 marks]

Calculate a suitable value for a load resistance R to be used in conjunction with an amplifier, to amplify the output from the above detector, such that the response time of the photodiode is not impaired. Explain the disadvantages of using a smaller value for R.

[4 marks]

The noise equivalent power $(NEP)_{A.L.}$ at the output is now dominated by amplifier noise such that

$$(NEP)_{A.L.} = rac{2h
u}{\eta e} \sqrt{rac{k_B T}{2 au R}}.$$

Calculate a value for the specific detectivity (D*) of the detector/amplifier combination, for a wavelength of 1.0 μ m, at room temperature and with unit efficiency. Comment on how this would compare to that of an ideal photon detector.

[7 marks]

2) With the aid of a suitably labelled diagram, explain the principles of operation of an avalanche photodiode, stating the main advantages and disadvantages of this type of detection device.

[7 marks]

The electron and hole currents (N, P) respectively) in an avalanche photodiode, of width w, may be described by the coupled equations

$$rac{dN}{dx} = \mu N +
u P$$

$$\frac{dP}{dx} = -\mu N - \nu P$$

where x is the distance across the semiconductor junction and μ and ν are the field and x-dependent ionisation coefficients for electrons and holes, respectively. Assuming that these ionisation coefficients are equal, show that an avalanche current will occur when

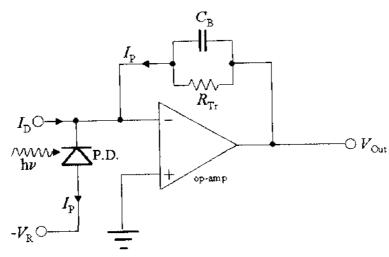
$$\int_0^w \mu \,\, dx = 1.$$

[6 marks]

An avalanche photodiode, with a full device current gain of Γ and unity Detector Quantum Efficiency (DQE), is used to detect an incident illumination of P Watts. Show that for the full device, the mean squared current fluctuation is given by

$$\overline{i_N^2} = 2 \frac{P}{h\nu} e^2 \Gamma^2 B \left(2 - \frac{1}{\Gamma} \right),$$

where Poisson statistics have been assumed, such that $\overline{i_N^2} = 2eIB$ for a mean signal current I of bandwidth B.


[6 marks]

Comment on how this quantity compares to that of an ideal quantum limited photon detector.

[1 mark]

3) Describe the principles of operation of the following detector circuit, which utilises a photodiode (P.D.) and an *ideal* operational amplifier (op-amp).

[3 marks]

Explain the significance of each of the following elements of the diagram:

a) the supplied voltage $-V_{\rm R}$,

[1 mark]

b) the supplied current $I_{\rm D}$,

[1 mark]

c) the resistor value $R_{\rm Tr}$, and

[1 mark]

d) the capacitance value $C_{\rm B}$.

[1 mark]

Given that the photodiode is illuminated at an intensity of $5~\mu\mathrm{W}~\mathrm{cm}^{-2}$, for which it has a spectral sensitivity of 0.2 Amps W⁻¹ cm⁻², calculate the voltage developed at V_{Out} if $R_{\mathrm{Tr}}=1~\mathrm{M}\Omega$ and the area of the photodiode is 1.0 mm \times 1.0 mm.

[3 marks]

Show, explaining the meaning of the symbols used and the asumptions you have made, that the width w of the depletion region at a p-n junction with bias $-V_{\rm R}$ may be expressed as:

$$w = \sqrt{rac{2\epsilon_r\epsilon_0\left(-V_{
m R}+\Phi
ight)}{eN_{
m A}\left(1+rac{N_{
m A}}{N_{
m D}}
ight)}}.$$

[5 marks]

The p-n junction photodiode has $N_{\rm A}=10^{15}~{\rm cm^{-3}},~N_{\rm D}=10^{17}~{\rm cm^{-3}},~\Phi=0.1$ V, and $\epsilon_r=20$. Estimate the upper limit for the frequency response when the photodiode is operated at a reverse bias of 2.0 V.

[4 marks]

Comment on the need for C_{B} .

[1 mark]

4) A thermal detector element with total thermal energy E, at a temperature T, has a heat capacity, C = dE/dT. Using the Boltzmann relationship for the probability of detector element $p(E_i)$ having an energy E_i is $\propto \exp{-(E_i/k_BT)}$, show that variance of deviations in temperature is given by:

$$\overline{\Delta T^2} = rac{k_B T^2}{C}.$$

[7 marks]

The detector has a thermal conductance G = dP/dT, where P is the incident thermal power, its frequency response is described by:

$$\overline{\Delta T^2}(\omega) = rac{A}{1+\omega^2 au^2},$$

where $\tau = C/G$ is the time constant of the device and where $A = 4kT^2/G$ is a constant and is independent of frequency. Show that in a low frequency regime, limited to a bandwidth B, the variance of the temperature deviations is given by:

$$\overline{\Delta T^2} = rac{4k_BT^2}{G}B.$$

[7 marks]

Hence show that the noise equivalent power (NEP) of such an idealised thermal detector, of unit detection area, is given by:

$$NEP = 4\sqrt{\sigma k_B T^5 B}$$

[4 marks]

Calculate the specific detectivity (D^*) of the detector when it is at a temperature of 300K.

[2 marks]

5) Describe blackbody radiation and state Wien's law and Stefan's law.

[3 marks]

Explain what is meant by the terms 'background limited detection' and 'noise equivalent temperature change' $(NE\Delta T)$.

[3 marks]

Show that the noise equivalent power, NEP, for a background limited detecting system is given by:

$$NEP = \sqrt{rac{(2h
u)(P_{
m S} + P_{
m B})B}{\eta}}$$

where the symbols have their usual meanings.

[4 marks]

An object generates temperature fluctuations in a background radiation field received from a scene which has a blackbody temperature of 300 K. An image of this object is formed using a thermal imaging system with an angular field of view of 1 milliradian and an entrance aperture size of $100 \, \mathrm{cm}^2$. A cooled filter is incorporated into the imaging system having peak transmittance at $10 \, \mu \mathrm{m}$ with a 10% bandwidth. Given Planck's radiation law

$$dI_{
u}=rac{2h
u^{3}d
u}{c^{2}\left(\exp\left(h
u/k_{B}T
ight)-1
ight)},$$

where the symbols have their usual meanings, calculate a value for $NE\Delta T$ for the imaging system, if the bandwidth required is 1 MHz.

[10 marks]