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Physical Constants

Permittivity of free space ε 0 = 8.854 × 10−12 F m−1

Permeability of free space µ 0 = 4 π × 10−7 H m−1

Speed of light in free space c = 2.998 × 108 m s−1

Gravitational constant G = 6.673 × 10−11 N m2 kg−2

Elementary charge e = 1.602 × 10−19 C
Electron rest mass me = 9.109 × 10−31 kg
Unified atomic mass unit mu = 1.661 × 10−27 kg
Proton rest mass mp = 1.673 × 10−27 kg
Neutron rest mass mn = 1.675 × 10−27 kg
Planck constant h = 6.626 × 10−34 J s
Boltzmann constant kB = 1.381 × 10−23 J K−1

Stefan-Boltzmann constant σ = 5.670 × 10−8 W m−2 K−4

Gas constant R = 8.314 J mol−1 K−1

Avogadro constant NA = 6.022 × 1023 mol−1

Molar volume of ideal gas at STP = 2.241 × 10−2 m3

One standard atmosphere P0 = 1.013 × 105 N m−2
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SECTION  A − Answer SIX parts of this section

1.1 Describe the sodium chloride (NaCl) crystal structure. Explain why NaF, which has
the NaCl structure, scatters X-rays as though its structure were simple cubic.

[7 marks]

1.2 Define the terms in the Bragg law  nλ  =  2dsinθ.  Derive an expression for the small
change in θ  produced by a small change in λ. Hence show that for θ  = 85° a 0.1 %
change in λ produces a change in θ  of approximately 0.7°.

[7 marks]

1.3 The cut-off frequency for the vibrations of a one-dimensional chain of identical atoms
is ωc = 2(K/M)½.  Define the terms in this expression. Assuming that an expression of
this type also applies to a three-dimensional crystal, show that the cut-off frequency
for 30Si is 3.4 % lower than that for 28Si.

[7 marks]

1.4 The Einstein expression for the heat capacity C of a non-metallic crystalline solid at
temperature T is given by
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Show that, for θ E  = 300 K, the heat capacity has reached approximately half of its
maximum value by T = 100 K.

[7 marks]

1.5 The resistivity ρ of a metal is given by 
τ

ρ 2
e
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m

= , where n is the electron

concentration and τ is the relaxation time. By considering the behaviour of τ, show
how Matthiessen’s rule is obtained.

[7 marks]

1.6 Two of the valence bands in silicon are degenerate at k = 0. Show this information on
a sketch of E vs. k, where E is the energy and k is the wavenumber. Identify, giving an
explanation, the heavy hole band and the light hole band. You may assume that

electrons moving in a periodic potential have an effective mass 
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[7 marks]
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1.7 Stating any assumptions, calculate the room-temperature hole concentration for an
n-type specimen of silicon containing an effective donor concentration of 1018 m−3.
(The intrinsic carrier concentration for silicon at room temperature is 2 × 1016 m−3.)

[7 marks]

1.8 The rectifier equation for the current I flowing through an ideal p-n junction at
temperature T and forward bias V is   I  =  I0 [exp(eV /kBT )  –  1] .

Define the meaning of the term I0. For a real rectifier diode, explain what is meant by
the forward dynamic resistance. A silicon rectifier has I0 = 10−10 A at room
temperature (293 K), and a forward dynamic resistance of 0.2 Ω. Calculate the voltage
across the whole device for a forward current of 1 A.

[7 marks]

SECTION  B − Answer TWO questions

2.  (a) Explain the meanings of the terms in the expression for the structure factor Fhkl in
relation to the diffraction of X-rays from a crystalline solid:

Fhkl   =  �
j

 fj exp {2πi (h xj + k yj + l zj)}.

[5 marks]

    (b) Show that, for allowed diffractions,
(i)  for the body centred cubic (BCC) structure (h + k + l) must be even
(ii)  for the face centred cubic (FCC) structure, h, k and l must be all odd or all even.

[12 marks]

    (c) X-ray diffraction measurements from a polycrystalline sample, known to be either
BCC or FCC, gave diffractions at the following angles, using X-rays with wavelength
0.175 nm.

Angles (degrees):  24.8,    29.0,    43.3,    53.5,    57.1,    75.8.

From these data, and the results of part (b), determine the crystal structure and the
lattice constant.

[13 marks]
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3.  (a) In the Debye analysis for the heat capacity of a non-metallic crystalline solid, the
lattice vibration energy at temperature T is given by
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where EZ is the zero-point energy, ω D is the Debye frequency and ω is the frequency
of a lattice mode.

Show that the heat capacity at low temperatures is given by
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[10 marks]

You may assume that 
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    (b) Explain what is meant by the Fermi energy of a metal. Sketch the distribution of
occupied energy levels at T = 0 and at T > 0.

The density-of-states function at the Fermi energy E F is given by 
F

A
F 2

3
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Show that the heat capacity of the free electrons in a metal is given approximately by

F
BA2

3
T
TkNCV =   mol−1 where T F is the Fermi temperature.

[10 marks]

    (c) The molar heat capacity CV of tungsten at low temperatures T has the following
values:

T (K) 1 2 3 4 10
CV (mJ K−1 mol−1) 1.36 2.90 4.82 7.23 43

By plotting a suitable graph, determine the Debye temperature and an approximate
value of the Fermi energy (in eV).

[10 marks]
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4. Krönig and Penney showed that, in a one-dimensional crystal, electrons moving in a
periodic potential with the same periodicity as the lattice can have energies E related
to the wavenumber k by

cos (ka)  =  cos (λa)  +  α sin (λa)  ,

where a is the period of the lattice,   
�

2/1
e )2( Em

=λ  ,    2
e

�λ
α Vm=   and V  represents

the strength of the potential barrier between the unit cells.

    (a) Using a diagram, show how this relationship leads to a situation in which allowed
energy bands are separated by forbidden energy bands.

[10 marks]

    (b) Show further that when V  = 0 (as in a metal) the solution reduces to the free-electron
parabola  E  =  � 2 k 2 /(2me).

[7 marks]

    (c) Using the results from the Krönig-Penney model, for a crystal with atoms separated by
3 × 10–10 m, and a potential barrier of strength  V  =  2 × 10–9 eV m, show that
electrons of energy 15 eV will lie in an allowed band.

[13 marks]
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5) For a semiconductor at temperature T the concentrations of electrons in the conduction
band and holes in the valence band are respectively
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where Eg and EF are the energy gap and Fermi energy, respectively, and me* and mh*
are the effective masses for the electron and hole, respectively. M is a factor which
depends on the number of conduction band minima, and A  is a constant.

    (a) Explain what is meant by an intrinsic semiconductor.
[3 marks]

    (b) For intrinsic germanium the mobilities of the electrons and holes are both
approximately proportional to T −3/2. Show that the electrical conductivity is given

approximately by  �
�
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expσ   where C is a constant.

[8 marks]

    (c) At temperatures above 200 K the energy gap of germanium in eV is given by
Eg = 0.782 − αT, where α is a constant. Use the expression in (b) to calculate the
temperature at which the conductivity of intrinsic germanium is a factor of 10 higher
than its value at 293 K.

[12 marks]

    (d) Explain, without mathematical derivation, how the addition of a modest concentration
of a substitutional group V impurity atom to germanium or silicon leads to a situation
in which the electron concentration is almost constant over a range of temperatures.

[7 marks]


