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Physical Constants

Permittivity of free space ε0 = 8.854 × 10−12 Fm−1

Permeability of free space µ0 = 4π × 10−7 H m−1

Speed of light in free space c = 2.998× 108 m s−1

Gravitational constant G = 6.673× 10−11 N m2 kg−2

Elementary charge e = 1.602× 10−19 C

Electron rest mass me = 9.109× 10−31 kg

Unified atomic mass unit mu = 1.661× 10−27 kg

Proton rest mass mp = 1.673× 10−27 kg

Neutron rest mass mn = 1.675× 10−27 kg

Planck constant h = 6.626× 10−34 J s

Boltzmann constant k B = 1.381× 10−23 J K−1

Stefan-Boltzmann constant σ = 5.670× 10−8 Wm−2 K−4

Gas constant R = 8.314 J mol−1 K−1

Avogadro constant NA = 6.022× 1023 mol−1

Molar volume of ideal gas at STP = 2.241× 10−2 m3

One standard atmosphere P0 = 1.013× 105 N m−2

Free energy F in terms of the N -particle partition function ZN :

F = −kBT log ZN

The internal energy U in terms of the N -particle partition function ZN :

U = kBT 2 ∂

∂T
log ZN

The entropy S in terms of the N -particle partition function ZN :

S = kB log ZN + kBT
∂

∂T
log ZN

The number of photons n (ω) dω in a frequency interval (ω, ω + dω) is given

by

n (ω) dω =
V

π2c3
ω2 dω

e
h̄ω

kBT − 1

Stirling’s formula:

lnn! ∼ n lnn− n as n→∞
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SECTION A – Answer all SIX parts of this section

1.1) Show that the partiton function Z for a single non-relativistic particle of mass
m in an infinite one-dimensional square-well potential of width L is

Z =
∞∑

n=1

e−
n2θ

T

where θ = h̄2π2

2mL2kB
, T is the temperature and quantum mechanics can be pre-

sumed to apply.

Hint: the energy levels of the particle in the potential are given by En = n2h̄2π2

2mL2 .

[7 marks]

1.2) Consider an ideal system of a thousand non-interacting spin 1
2 particles in the

absence of an external magnetic field. Derive an expression for the probability
that exactly n of the thousand particles has spin up.

[7 marks]

1.3) The energy levels of the five spin states associated with a particle of spin two
have energies 2ε, ε, 0, −ε and −2ε. Find an expression for the free energy at
temperature T of a system consisting of N such particles, each at a different
site, assuming that they are non-interacting.

[7 marks]

1.4) Two identical non-interacting spin 1
2 fermion particles with spin up, can occupy

any of three single particle states. Two of these states have energy ε and the
other has energy 0. Calculate the partition function when the system is at
temperature T .

[7 marks]
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1.5) When the Universe expands by a linear factor χ, all wavelengths are stretched
by the factor χ.

Show that the mean energy density is mutiplied by a factor χ−4.

Hence show that the black body radiation filling the Universe remains that of a
black body but with a temperature which scales as χ−1.

[7 marks]

1.6) By differentiating the single particle partition function Zsp =
∑
i

e−βεi with

respect to β
(
= 1

kBT

)
show that for a system of N particles obeying Boltzmann

statistics, the internal energy U is given by

U = NkBT 2 ∂

∂T
log Zsp.

[7 marks]
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SECTION B – Answer TWO questions

2a) A system consists of N identical but distinguishable particles each of which has
two energy levels. The energy separation of the levels is fixed at ε and the upper
level is g-fold degenerate.

Calculate the number of states with total energy E = nε where the energy of
the lower level is taken to be 0.

[9 marks]

b) By using Stirling’s formula when N and n are large show that the entropy
S (E,N) is given by

S (E,N) = NkB (x lnx + (1− x) ln (1− x)− x ln g)

where x = n/N.

[10 marks]

The temperature T associated with the system can be identified through the
relation

1
kBT

=
1
kB

(
∂S

∂E

)
N

.

c) Solve for x in terms of T and hence find the occupation number of the lower
energy level in terms of T .

[5 marks]

d) If g = 2 and E = 0.75Nε find an expression for T proving that it is negative.

[2 marks]

f) If the system is brought into contact with a bath at equilibrium at any temper-
ature discuss the direction of the flow of heat between it and the bath.

[4 marks]
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3) Consider a linear chain of N + 1 atoms each of mass m for which the atoms
at each end of the chain are fixed. Let ξi be the displacement of the i-th atom
from its equilibrium position. The potential energy V of the chain is given by

V =
1
2
K

N−1∑
i=0

(ξi+1 − ξi)
2

where K is a positive constant.

a) Show that the equation of the i-th atom is

mξ̈i + 2Kξi −K (ξi+1 + ξi−1) = 0.
[5 marks]

b) By making the transformation

ξl =

√
2
N

N−1∑
j=1

xj sin
(

ljπ

N

)
prove that

ẍj = −ω2
j xj , j = 1, . . . , N − 1

where ωj =
√

4K
m sin

(
jπ
2N

)
. [5 marks]

c) In terms of these variables the system can be considered to be a set of N − 1
independent harmonic oscillators. Assuming the form of the energy eigenvalues
for a single harmonic oscillator in quantum theory, show that, for this system,
the energy of a given configurtion {nj} is

E ({nj}) =
N−1∑
j=1

(
nj +

1
2

)
h̄ωj .

[5 marks]

d) Prove that the canonical partition function Z is given by

Z =
N−1∏
j=1

e−
1
2 βh̄ωj

1− e−βh̄ωj

where β = 1
kBT and T is the temperature. [10 marks]

e) Show that the internal energy U (T ) can be written as

U (T ) =

ωmax∫
0

dω g (ω)
(

1
2
h̄ω +

h̄ω

eβh̄ω − 1

)

where ωmax =
√

4κ
m and g (ω) is a suitable density of states.

[5 marks]
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4a) A white dwarf star consists mainly of 4He which is completely ionised. The
pressure resisting the inward pull of gravity is due to the electrons.

Consider such a star with mass density ρ = 1010 Kg m−3 and temperature
T = 107 K. Using the density of states in k-space and transforming into the
corresponding one in energy show that the number density n of non-relativistic
electrons is given by

n =
1

2π2

(
2me

h̄2

)3/2
∞∫
0

dε
ε1/2

eβ(ε−µ) + 1

where me is the mass of the electron and µ is the chemical potential.

[8 marks]

b) Hence show that, at T = 0, the Fermi level is determined by the relation

n =
1

3π2

(
2meEF

h̄2

)3/2
.

[8 marks]

c) Demonstrate (using numerical values) the degeneracy condition

kBT � EF

i.e. T is negligible. [3 marks]

d) The pressure p of the electron gas is given by

p =
2kBT

(2π)3

∫
d3k ln

1 + exp

−
(
ε
(←−

k
)
− µ

)
kBT


where ε

(←−
k

)
is the energy of a single electron with momentum←−k . For the case

of the degenerate electron gas show that

p ≈ 1
5

(
3π2

) 2
3 h̄2

me
n

5
3

[8 marks]

and equivalently that
p ≈ κρ

5
3

[3 marks]

with κ = 1
5

(
3π2

) 2
3 h̄2

me

(
1

2mp

) 5
3

where mp is the proton mass.
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