King's College London

University of London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CP3212 Statistical Mechanics

Summer 2003

Time allowed: THREE Hours

Candidates must answer SIX parts of SECTION A, and TWO questions from SECTION B.

The approximate mark for each part of a question is indicated in square brackets.

You must not use your own calculator for this paper.
Where necessary, a College calculator will have been supplied.

Avogadro's number	$N_{A}=6.0221 \times 10^{23} \mathrm{~mol}^{-1}$
Bohr magneton	$\mu_{B}=9.2740 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
Boltzmann's constant	$k_{B}=1.3807 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Planck constant	$h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Dirac constant	$\hbar=1.0546 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in free space	$c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$

SECTION A - Answer SIX parts of this section

1.1) Consider an ideal system of 5 non-interacting spin $\frac{1}{2}$ particles in the absence of an external magnetic field. What is the probability that n of the five spins have spin up for each of the cases $n=0,1,2,3,4,5$?
1.2) Consider an ideal gas of N molecules which is in equilibrium within a container of volume V_{0}. Denote by n the number of molecules located within any subvolume V of this container. The probability p that a given molecule is located within the subvolume V is then given by $p=\frac{V}{V_{0}}$.
Find the standard deviation Δn in the number of molecules located within the subvolume.
1.3) Consider a system of non-interacting particles of mass m confined within a box of edge lengths L_{x}, L_{y}, and L_{z} along the x, y, and z axes respectively. In a general quantum state σ specified by three integer quantum numbers n_{x}, n_{y}, and n_{z} the energy is given by

$$
E=\frac{\pi^{2} \hbar^{2}}{2 m}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{z}^{2}}{L_{z}^{2}}\right) .
$$

In state σ a particle exerts a force F_{x} in the x-direction on the wall on which $x=L_{x}$ and the wall exerts an equal and opposite force on the particle. Show that in a cubic box, at some non-zero temperature, the mean value of the force F_{x} denoted by $\left\langle F_{x}\right\rangle$ is given by

$$
\left\langle F_{x}\right\rangle=\frac{2}{3} \frac{\langle E\rangle}{L_{x}}
$$

where $\langle E\rangle$ is the mean value of E.
[Hint: $F_{x}=-\frac{\partial E}{\partial L_{x}}$]
1.4) Consider two identical boson particles which are to be placed in four single particle states.Two of these states have energy 0 , one has energy ε, and the last has energy 2ε. Calculate the partition function when the system is at temperature T.
1.5) The energy density emitted by a black body in the wavelength range λ to $\lambda+d \lambda$ is $u(\lambda) d \lambda$ where

$$
u(\lambda)=\frac{8 \pi h c}{\lambda^{5}\left(e^{h c / \lambda k_{B} T}-1\right)}
$$

Show that to a good approximation $u(\lambda)$ has a maximum at a wavelength λ which is inversely proportional to T.
[7 marks]
1.6) Consider an ideal Fermi gas whose atoms have a mass of $m=5 \times 10^{-27} \mathrm{~kg}$, nuclear spin $\frac{1}{2}$, and nuclear magnetic moment $\mu_{N}=10^{-26} J T^{-1}$. The gas is placed in a magnetic field B so that the spin energy levels are $\pm \mu_{N} B$. At zero temperature what is the largest density for which the gas can be completely polarised by a magnetic induction field of $10 T$?
[7 marks]
[Hint: show that the condition for complete polarisation is $2 \mu_{N} B>\frac{\hbar^{2} k_{F \uparrow}^{2}}{2 m}$ where $k_{F \uparrow}$ is the Fermi wave vector of the up-spin states.]
1.7) A ferro-electric crystal has a free energy of the form

$$
F=\frac{1}{2} \alpha\left(T-T_{c}\right) P^{2}+\frac{1}{4} b P^{4}+\frac{1}{6} c P^{6}+D x P^{2}+\frac{1}{2} E x^{2}
$$

where P is the electric polarization and x represents the strain applied to the crystal. Minimize the free energy with respect to x, determine the free energy at the minimum and hence deduce that for

$$
b>\frac{2 D^{2}}{E}
$$

the system has a second order phase transition.
1.8) The density of states for a highly relativistic particle in one dimension is constant. Use this to show that the partition function Z at temperature T is proportional to $k_{B} T$.
[Hint: Ignore the mass of the particle when it is highly relativistic.]

SECTION B - Answer TWO questions

2) Let $\Omega(N, V, E)$ be the number of microscopic states with N particles in volume V and energy between E and $E+\delta E$. Why is δE usually taken to be non-zero and why are the thermodynamic consequences insensitive to the choice of δE ?
[4 marks]
Show that the temperature T satisfies

$$
\beta=\left(\frac{\partial \log \Omega}{\partial E}\right)_{N, V}
$$

where $\beta=1 / k_{B} T$ by using the first law of thermodynamics.
[9 marks]
Consider two macroscopic systems A and A^{\prime} with energies E and E^{\prime} respectively. As above let $\Omega(N, V, E)$ be the number of states accessible to A and $\Omega^{\prime}\left(N^{\prime}, V^{\prime}, E^{\prime}\right)$ the number accessible to A^{\prime}. Denote by A^{*} the combined system of A and $A^{\prime} . A^{*}$ is assumed to be isolated and has fixed energy E_{0}.

What is the basic statistical assumption concerning the microstates accessible to A^{*} ?

Calculate the number $\Omega^{*}(E)$ of states of A^{*} which are compatible with the system A having an energy in the range E and $E+\delta E$.

Hence calculate the probability $P(E) d E$ for A to have an energy in the range E and $E+d E$.

Assume that $P(E)$ has the form

$$
P(E) \propto \exp \left(-(E-\langle E\rangle)^{2} /\left(2 k_{B} T^{2} C_{V}\right)\right)
$$

where the symbols have their usual meanings.
Use this to estimate the probability for observing a spontaneous fluctuation in E of the size of $10^{-6}\langle E\rangle$ for 0.001 moles of a monatomic gas.
3) At low temperature the atoms of a solid vibrate about their equilibrium positions. The phonon gas hamiltonian H can be expressed as

$$
H=\sum_{\alpha=1}^{D N} H_{\alpha}
$$

where H_{α} is the harmonic oscillator hamiltonian with a fundamental frequency ω_{α}, D is the dimensionality of the lattice and N is the number of particles. Explain why the canonical partition Q for the lattice can be written as

$$
Q(\beta, N, V)=\sum_{n_{1}, n_{2}, \ldots=0}^{\infty} \exp \left[-\beta \sum_{\alpha}\left(\frac{1}{2}+n_{\alpha}\right) \hbar \omega_{\alpha}\right]
$$

with a suitable interpretation of the symbols.
[12 marks]
[Hint: Recall that the eigenenergy of a harmonic oscillator with frequency ω is $\left.\left(\frac{1}{2}+n\right) \hbar \omega, n=0,1,2, \ldots.\right]$
Show that

$$
\log (Q)=-\sum_{\alpha=1}^{D N} \log \left[\exp \left(\frac{\beta \hbar \omega_{\alpha}}{2}\right)-\exp \left(\frac{-\beta \hbar \omega_{\alpha}}{2}\right)\right] .
$$

The Helmholtz free energy F can be written as

$$
\beta F=\int_{0}^{\infty} d \omega g(\omega) \log \left[\exp \left(\frac{\beta \hbar \omega}{2}\right)-\exp \left(-\frac{\beta \hbar \omega}{2}\right)\right]
$$

where

$$
g(\omega) d \omega=\text { the number of phonon states with frequency between } \omega \text { and } \omega+d \omega \text {. }
$$

For a 3-dimensional solid $(\mathrm{D}=3)$ with

$$
g(\omega)=\left\{\begin{array}{l}
\left(\frac{9 N}{\omega_{0}^{3}}\right) \omega^{2}, \omega<\omega_{0} \\
0, \omega>\omega_{0}
\end{array}\right.
$$

show that for $\beta \hbar \omega \gg 1$

$$
\beta F=\frac{9 N \hbar \omega_{0}}{8} \beta
$$

Hence show that the mean energy $\langle E\rangle$ in this limit is $\frac{9 N \hbar \omega_{0}}{8}$.
4) a) Define the grand canonical partition function Ξ for a system.

The entropy S is given by

$$
S=-k_{B}[-\log \Xi-\beta\langle E\rangle+\beta \mu N]
$$

where the symbols have their standard meanings.
b) Deduce that

$$
\beta p V=\log \Xi
$$

where p is the thermodynamic pressure.
c) For an ideal gas of fermions the grand canonical partition function has the form

$$
\Xi=\sum_{n_{1}, n_{2}, \ldots, n_{j}, \ldots=0}^{1} \exp \left[-\beta \sum_{j} n_{j}\left(\varepsilon_{j}-\mu\right)\right]
$$

where n_{j} are occupation numbers of single particle states of energy ε_{j}.
Show that the average occupation number is given by

$$
\left\langle n_{j}\right\rangle=\frac{1}{e^{\beta\left(\varepsilon_{j}-\mu\right)}+1} .
$$

[6 marks]
d) Structureless fermions of mass m have an energy $\varepsilon=\frac{\hbar^{2} k^{2}}{2 m}$. Use the results of b) and c) to prove that

$$
\beta p=\frac{1}{\lambda^{3}} f(z)
$$

where $z=\exp (\beta \mu), \lambda=\left(\frac{2 \pi \beta \hbar^{2}}{m}\right)^{\frac{1}{2}}$ and

$$
f(z)=\frac{4}{\sqrt{\pi}} \int_{0}^{\infty} d x x^{2} \log \left(1+z e^{-x^{2}}\right)
$$

[18 marks]
5) In the Ising model N spins $s_{i}\left(s_{i}= \pm 1\right)$ are arranged on a lattice. In the presence of a magnetic field H the energy of the system in a particular state ν is

$$
E_{\nu}=-\sum_{i=1}^{N} H \mu s_{i}-\frac{J}{2} \sum_{\langle i j\rangle} s_{i} s_{j}
$$

where J is a coupling constant, μ is the magnetic dipole moment and the second sum is over nearest neighbour pairs.
a) Describe the mean field approach to calculating the mean magnetization m per particle at temperature T and show that this leads to the formula

$$
m=\tanh (\beta \mu H+\beta z J m)
$$

where $\beta=\frac{1}{k_{B} T}$ and z is the number of nearest neighbours for a lattice site.
[15 marks]
b) Show that

$$
\beta=\frac{1}{2 J z m} \log \left(\frac{1+m}{1-m}\right)
$$

when $H=0$.
c) Use the Taylor expansion for temperatures near $\frac{z J}{k_{B}}$ to show that

$$
m \propto\left(T_{c}-T\right)^{1 / 2}
$$

where T_{c} is the critical temperature.
d) Prove that at zero temperature this theory gives $m= \pm 1$.

