King's College London

UNIVERSITY OF LONDON

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the Authority of the Academic Board.

B.Sc. EXAMINATION

CP/2720 Computational Physics
Summer 2001

Time allowed: THREE HOURS

Candidates must answer any SIX questions from SECTION A, and TWO questions from SECTION B.

You are expected to describe the methods of solution, not to work out the answers accurately or write a computer program.

Separate answer books must be used for each section of the paper.
The approximate mark for each part of a question is indicated in square brackets.

You must not use your own calculator for this paper. Where necessary, a College calculator will have been supplied.

TURN OVER WHEN INSTRUCTED

© 2001 King's College London

SECTION A - Answer SIX parts of this section

1.1) Describe how the Monte Carlo method can be used to find the value of π.
1.2) The recurrence relation for Chebyshev polynomials, $T_{n}(x)$ is:

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \text { where } n \geq 1
$$

Show that this relation is only stable for $0<|x|<1$.
1.3) Use a Taylor series expansion of $f(x+\Delta x)$ to show that a numerical evaluation of $f^{\prime}(x)$ using $f^{\prime}(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x}$ introduces errors of the order of Δx. By using the symmetric difference formula $f^{\prime}(x)=\frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x}$, how is the accuracy improved?
1.4) Suppose that x_{1} is an approximate value of the root of an equation $f(x)=0$. Show that a more accurate estimate is given by $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}$ (NewtonRaphson method). When does this method fail?
1.5) An equation for the conservation of a quantity u, in one dimension, can be expressed as:

$$
\frac{\partial u}{\partial t}=-v \frac{\partial u}{\partial x}
$$

where v is a constant.
Show that for this equation, the finite difference equations in the forward time, centred space (FTCS) scheme are unstable for any choice of Δt and Δx.
[7 marks]
1.6) A continuous waveform $F(t)$ is digitally sampled at intervals of Δ. Show graphically that two waves with frequencies f_{1} and $\left(f_{1}+1 / \Delta\right)$ cannot be distinguished as components of the digitally sampled waveform $F(t)$.
1.7) Explain, as a series of steps, how you would use the simulated annealing technique to find an estimate of the global minimum of a function of N variables, $F\left(x_{1}, x_{2}, x_{3}, \ldots x_{N}\right)$ with respect to those N variables. (You need not discuss the choice of the "temperature" variable or the step size.)
1.8) Illustrate the method of Gaussian elimination, by using it to solve the following equations:

$$
\begin{array}{rrrr}
x+ & y+ & z & =2 \\
x- & y- & z & =0 \\
2 x+ & 2 y+ & z & =5
\end{array}
$$

Under what circumstances does this method fail or become unreliable?
[7 marks]

SECTION B - Answer TWO questions

Explain how you would solve the problems numerically. A detailed description of the method of solution is required, not a computer program or an actual solution.
2) A circular drumskin is fixed around its circumference. When it is struck in the centre, the vertical displacement $z(r, \theta, t)$ of the drumskin satisfies the (circularly symmetric) wave equation.:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial z}{\partial r}\right)=\frac{1}{u^{2}} \frac{\partial^{2} z}{\partial t^{2}}
$$

Express this equation in finite difference form.

Show that these finite difference equations are stable if $\frac{u \Delta t}{\Delta x} \leq 1$.
[15 marks]
If the initial displacement of the drumskin is a cone shape, with the maximum displacement at the centre, explain how you would use the finite difference equations to find the subsequent displacement of the centre of the drumskin.
[10 marks]
3) The equation of motion of a simple pendulum, of fixed length l, is

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}+\frac{g}{l} \sin \theta=0
$$

where θ is the angle to the vertical.
Separate this differential equation into two first order ordinary differential equations.

The pendulum is released from rest at an angle of θ_{0}. Show how the fourth order Runge-Kutta method can be used to find the angle of the pendulum as a function of time.

Describe how you would use the "shooting method" in order to find the value of the angle θ_{0} such that the period of the pendulum is exactly 2.25 s .
4) Sketch the function $\frac{\sin x}{x}$ in the range $-\pi \leq x \leq \pi$.

Which value of x might be expected to cause problems in the numerical evaluation of this function? How could these problems be overcome?
[4 marks]
Describe how you would evaluate $\int_{-\pi}^{\pi} \frac{\sin x}{x} \mathrm{~d} x$ using:
a) the trapezium rule,
b) the expansion of $\frac{\sin x}{x}$ as a series,
c) a Monte Carlo technique.

Explain which of a), b) or c) you would expect to be the most accurate and efficient evaluation method?
[The series for $\left.\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!} \cdots\right]$
5) Explain what is meant by an "unstable recursion relation".

A recursion relation for Legendre polynomials, $P_{n}(x)$, is:

$$
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)
$$

Show that this recursion relation (for large n) is stable for $|x|<1$, but unstable for $|x|>1$.

Given that $P_{0}(x)=1$ and $P_{l}(x)=x$, derive $P_{4}(x)$.

The summation formula for Legendre polynomials is:

$$
P_{n}(x)=2^{-n} \sum_{m=0}^{[n / 2]}(-1)^{m}\binom{n}{m}\binom{2 n-2 m}{n} x^{n-2 m}
$$

where $\binom{n}{m}=\frac{n!}{m!(n-m)!}$ are the binomial coefficients, and $[n / 2]$ is the integer produced by rounding $n / 2$ down.

Describe how you would use the summation formula to calculate $P_{4}(x)$ with $x=10$.
[10 marks]
What are the most reliable and efficient methods for calculating $P_{4}(x)$ for $x<1$ and $x>10.0$? Justify your answer.

