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SECTION A – Answer SIX parts of this section

1.1) Describe how truncation errors and rounding errors arise.
[7 marks]

1.2) The recurrence relation for Legendre polynomials is:
).()()12()()1( 11 xnPxxPnxPn nnn −+ −+=+

Show that this relation is unstable for |x|>1 when n is large.
[7 marks]

1.3) Show how the "bubble sort" and the "insertion method" can be used to sort the
integers: 3, 4, 1, 5, 2 into ascending order. Which of these methods is the more
efficient?

[7 marks]

1.4) Show how to use the Newton-Raphson method to find a root of the equation
f(x) = x3 - 8 = 0, using a starting value of 3. Why does this method not work if
the starting value is 0?

[7 marks]

1.5) By expanding a function f(x) around its minimum in a Taylor series, show that
the error in the calculation of the position of its minimum is proportional to the
square root of the computer’s precision.

[7 marks]

1.6) Show how to calculate a fast Fourier transform (FFT) of a 3 bit step function
f(t)=0,0,0,0,1,1,1,1 for t=0,1,2 ... 7.

[7 marks]

1.7) Explain how to generate a set of random numbers which fall into the normal

distribution, dxedxxp xx 22 2/)(

2

1
)( σ−−

πσ
=  from a uniform distribution of

random numbers.
[7 marks]

1.8) Explain how to use the Monte Carlo method to evaluate the integral

∫ θθ
V

rrr dd)coscos(   where V is the area inside the circle r =1.

[7 marks]

SEE NEXT PAGE
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SECTION B - answer TWO questions

2) Sketch the function  f(x) = x5 - 5x2 + 3 for the range -1< x < 2. Describe two
methods that could be used to find the three real roots of this equation:

f(x) = x5 - 5x2 + 3 = 0.
[12 marks]

In what circumstances do these methods fail?
[3 marks]

Separate the similar complex equation: z5 - 5z2 + 3 = 0, with  z = x + iy (where
x and y are real) into two simultaneous equations (the real and imaginary parts
of this equation) F(x,y) = 0, G(x,y) = 0.

[5 marks]

Hence, show how the roots of this complex equation can be determined.
[10 marks]

3) The Bessel functions, Jn(x) (with integer values of n)  have the following
recursion relation:
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Show that this is unstable for all values of x and large n.
[6 marks]

Bessel functions can be determined from the series:
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Describe how to evaluate J0(x) for the range .80 ≤≤ x
[10 marks]

Bessel functions can be calculated from the continued fraction:

L
−+−+−+

=+

xnxnxnJ

J

n

n

/)3(2

1

/)2(2

1

/)1(2

11

Explain how to evaluate J1(x) for the range .80 ≤≤ x
[10 marks]

What is the best way to calculate Bessel functions with n = 2 and 3 in the
range 84 ≤≤ x ?

[4 marks]

SEE NEXT PAGE
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4) A beam of length l is supported at each end and loaded in the middle. The
differential equation which determines the deflection downwards, y, at
distance x from one end is:

K
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where K is a constant. The support of the beam means that y(0) = y(l) = 0, but

we have no knowledge of the values of 
x

y

d

d
at the ends.

Separate this differential equation into two first order ordinary differential
equations.

[4 marks]

Show how the fourth order Runge-Kutta method can be used to find the
deflection of the beam as a function of the distance along it, assuming that
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 where a is some initial estimate.

[20 marks]

Briefly explain how the “shooting method” can be used to find y(x) for
.0 lx ≤≤

[6 marks]

5) The heat flow in a copper bar is determined by the partial differential

equation: 
2
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, where T is the temperature, x the distance along the

bar and κ is a constant.

Express this equation in finite difference form.
[5 marks]

Show that the finite difference equations are stable if 1
)(

2
2

≤
∆

∆κ
x

t
.

[The identity (1-cos2)=2sin2  may be helpful.]
[15 marks]

One end of the bar is kept at 0º C. At time t=0, the temperature of the other
end is raised to 100º C and maintained at that temperature. Explain how the
temperature along the bar can be determined as a function of time.

[10 marks]
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