King's College London

UNIVERSITY OF LONDON

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the Authority of the Academic Board.

B.Sc. EXAMINATION

CP/2720 Computational Physics

Summer 2000

Time allowed: THREE HOURS

Candidates must answer any SIX questions from SECTION A, and TWO questions from SECTION B.

You are expected to describe the methods of solution, not to work out the answers accurately or write a computer program.

Separate answer books must be used for each section of the paper.
The approximate mark for each part of a question is indicated in square brackets.

You must not use your own calculator for this paper. Where necessary, a College calculator will have been supplied.

TURN OVER WHEN INSTRUCTED

© 2000 King's College London

SECTION A - Answer SIX parts of this section

1.1) Describe how truncation errors and rounding errors arise.
1.2) The recurrence relation for Legendre polynomials is:

$$
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x) .
$$

Show that this relation is unstable for $|x|>1$ when n is large.
1.3) Show how the "bubble sort" and the "insertion method" can be used to sort the integers: $3,4,1,5,2$ into ascending order. Which of these methods is the more efficient?
1.4) Show how to use the Newton-Raphson method to find a root of the equation $f(x)=x^{3}-8=0$, using a starting value of 3 . Why does this method not work if the starting value is 0 ?
1.5) By expanding a function $f(x)$ around its minimum in a Taylor series, show that the error in the calculation of the position of its minimum is proportional to the square root of the computer's precision.
1.6) Show how to calculate a fast Fourier transform (FFT) of a 3 bit step function $f(t)=0,0,0,0,1,1,1,1$ for $t=0,1,2 \ldots 7$.
1.7) Explain how to generate a set of random numbers which fall into the normal distribution, $p(x) d x=\frac{1}{\sqrt{2 \pi \sigma}} e^{-(x-\bar{x})^{2} / 2 \sigma^{2}} d x$ from a uniform distribution of random numbers.
1.8) Explain how to use the Monte Carlo method to evaluate the integral $\int_{V} \cos (r \cos \theta) r \mathrm{~d} r \mathrm{~d} \theta$ where V is the area inside the circle $r=1$.

SECTION B - answer TWO questions

2) Sketch the function $f(x)=x^{5}-5 x^{2}+3$ for the range $-1<x<2$. Describe two methods that could be used to find the three real roots of this equation:

$$
f(x)=x^{5}-5 x^{2}+3=0 .
$$

In what circumstances do these methods fail?

Separate the similar complex equation: $z^{5}-5 z^{2}+3=0$, with $z=x+i y$ (where x and y are real) into two simultaneous equations (the real and imaginary parts of this equation) $F(x, y)=0, G(x, y)=0$.

Hence, show how the roots of this complex equation can be determined.
[10 marks]
3) The Bessel functions, $J_{n}(x)$ (with integer values of n) have the following recursion relation:

$$
J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)-J_{n-1}(x)
$$

Show that this is unstable for all values of x and large n.

Bessel functions can be determined from the series:

$$
J_{n}(x)=\sum_{s=0}^{\infty} \frac{(-1)^{s}}{s!(n+s)!}\left(\frac{x}{2}\right)^{n+2 s}
$$

Describe how to evaluate $J_{0}(x)$ for the range $0 \leq x \leq 8$.

Bessel functions can be calculated from the continued fraction:

$$
\frac{J_{n+1}}{J_{n}}=\frac{1}{2(n+1) / x-} \frac{1}{2(n+2) / x-} \frac{1}{2(n+3) / x-} \cdots
$$

Explain how to evaluate $J_{1}(x)$ for the range $0 \leq x \leq 8$.

What is the best way to calculate Bessel functions with $n=2$ and 3 in the range $4 \leq x \leq 8$?
4) A beam of length l is supported at each end and loaded in the middle. The differential equation which determines the deflection downwards, y, at distance x from one end is:

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-K
$$

where K is a constant. The support of the beam means that $y(0)=y(l)=0$, but we have no knowledge of the values of $\frac{d y}{d x}$ at the ends.

Separate this differential equation into two first order ordinary differential equations.

Show how the fourth order Runge-Kutta method can be used to find the deflection of the beam as a function of the distance along it, assuming that $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{x=0}=a$, where a is some initial estimate.

Briefly explain how the "shooting method" can be used to find $y(x)$ for $0 \leq x \leq l$.
5) The heat flow in a copper bar is determined by the partial differential equation: $\frac{\partial T}{\partial t}=\kappa \frac{\partial^{2} T}{\partial x^{2}}$, where T is the temperature, x the distance along the bar and κ is a constant.

Express this equation in finite difference form.

Show that the finite difference equations are stable if $\frac{2 \kappa \Delta t}{(\Delta x)^{2}} \leq 1$.
[The identity $(1-\cos 2 \theta)=2 \sin ^{2} \theta$ may be helpful.]

One end of the bar is kept at $0^{\circ} \mathrm{C}$. At time $t=0$, the temperature of the other end is raised to $100^{\circ} \mathrm{C}$ and maintained at that temperature. Explain how the temperature along the bar can be determined as a function of time.
[10 marks]

