King's College London

University of London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CP 2470 Principles of Thermal Physics

January 2006

Time allowed: THREE Hours

Candidates should answer ALL parts of SECTION A, and no more than TWO questions from SECTION B. No credit will be given for answering further questions.

The approximate mark for each part of a question is indicated in square brackets.

You must not use your own calculator for this paper. Where necessary, a College calculator will have been supplied.

Physical Constants

Permittivity of free space
Permeability of free space
Speed of light in free space
Gravitational constant
Elementary charge
Electron rest mass
Unified atomic mass unit
Proton rest mass
Neutron rest mass
Planck constant
Boltzmann constant
Stefan-Boltzmann constant
Gas constant
Avogadro constant
Molar volume of ideal gas at STP
One standard atmosphere

$$
\begin{array}{rll}
\epsilon_{0} & =8.854 \times 10^{-12} & \mathrm{~F} \mathrm{~m}^{-1} \\
\mu_{0} & =4 \pi \times 10^{-7} & \mathrm{H} \mathrm{~m}^{-1} \\
c & =2.998 \times 10^{8} & \mathrm{~m} \mathrm{~s}^{-1} \\
G & =6.673 \times 10^{-11} & \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
e & =1.602 \times 10^{-19} & \mathrm{C} \\
m_{\mathrm{e}} & =9.109 \times 10^{-31} & \mathrm{~kg} \\
m_{\mathrm{u}} & =1.661 \times 10^{-27} & \mathrm{~kg} \\
m_{\mathrm{p}} & =1.673 \times 10^{-27} & \mathrm{~kg} \\
m_{\mathrm{n}} & =1.675 \times 10^{-27} & \mathrm{~kg} \\
h & =6.626 \times 10^{-34} & \mathrm{~J} \mathrm{~s} \\
k_{\mathrm{B}} & =1.381 \times 10^{-23} & \mathrm{~J} \mathrm{~K}^{-1} \\
\sigma & =5.670 \times 10^{-8} & \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \\
R & =8.314 & \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
N_{\mathrm{A}} & =6.022 \times 10^{23} & \mathrm{~mol}^{-1} \\
& =2.241 \times 10^{-2} & \mathrm{~m}^{3} \\
P_{0} & =1.013 \times 10^{5} & \mathrm{~N} \mathrm{~m}^{-2}
\end{array}
$$

Throughout this paper, T denotes the temperature, V the volume and P the pressure. C_{P} and C_{V} respectively denote the heat capacity at constant pressure and the heat capacity at constant volume. $\gamma=C_{P} / C_{V}$ and n is the number of moles.

SECTION A - Answer ALL parts of this section

1.1) Give a statement of the First Law of Thermodynamics, discussing the path dependence for the different quantities which appear in this law.
[5 marks]
1.2) Sketch on a Clapeyron diagram (P, V) the isothermal curves of a pure substance of critical temperature T_{c} in the three cases: $T>T_{c}, T=T_{c}$ and $T<T_{c}$. Explain the presence of a plateau in one of these curves.
[6 marks]
1.3) One kilogram of ice-cold water is put in 4 kilograms of boiling water at atmospheric pressure. Explain how to obtain the equilibrium temperature and derive its value in degrees Celsius.
[6 marks]
1.4) The energy equation reads

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

where U is the internal energy of a system that could depend on T and V. Define the enthalpy and explain why it depends on the temperature only for an ideal gas.
[7 marks]
1.5) A system Z with initial temperature T_{1} and heat capacity C (independent of T) is put in contact with a heat source at temperature T_{0} until the total isolated system (source $+Z$) reaches equilibrium. Both systems exchange heat only. Derive an expression for the total change in entropy ΔS during the process and check that $\Delta S>0$.
[8 marks]
1.6) The latent heat of vaporization of a fluid L and the saturated vapour pressure P_{s} are related by the Clausius-Clapeyron equation

$$
L=T(v-u) \frac{\mathrm{d} P_{s}}{\mathrm{~d} T}
$$

where v is the volume per unit mole of the vapour phase and u is the volume per unit mole of the liquid phase. If $v \gg u$ and the vapour is supposed ideal, derive an expression for the function $P_{s}(T)$ in the case where L is constant. Sketch $P_{s}(T)$ and indicate the triple point and the critical point of the fluid.
[8 marks]

SECTION B - Answer TWO questions

2) An ideal gas operates in cycles, decomposed into three steps. The first step $(A$ to B) is an adiabatic compression from the the volume V_{A} to V_{B}. The second step (from B to C) is an isobaric expansion and the third step, isochoric, leads back to A.
a) Sketch such a cycle on a Clapeyron diagram (P, V) and indicate the heat transfers, justifying their signs.
[7 marks]
b) Define the efficiency of the cycle and show that it is given by

$$
\eta=1+\frac{Q_{2}}{Q_{1}}
$$

where Q_{1} is the heat intake and Q_{2} is given to the surroundings.
[5 marks]
c) Give an expression for Q_{1}, Q_{2} in terms of the temperatures T_{A}, T_{B}, T_{C} and show that

$$
\eta=1-\frac{1}{\gamma} \frac{1-p}{1-a}
$$

where $p=P_{A} / P_{B}$ and $a=V_{B} / V_{A}$.
[8 marks]
d) Using an appropriate relation characterizing the adiabatic process, give an expression for the efficiency which depends on γ and a only.
[5 marks]
e) Using the Mayer relation, evaluate γ for a monoatomic ideal gas with internal energy $U=(3 / 2) n R T$ and hence evaluate η if $a=0.1$.
[5 marks]
3) A paramagnetic sample with entropy S and total magnetic moment M has an internal energy U such that, in an infinitesimal change, $d U=T d S+B d M$, where B is an external magnetic field applied to the sample.
a) Using analogies with a gas, explain why the enthalpy H and the Gibbs free energy G of the paramagnetic sample are $H=U-B M$ and $G=U-B M-T S$.
[4 marks]
b) The heat capacity at constant field is defined by

$$
C_{B}=\left(\frac{\partial H}{\partial T}\right)_{B}
$$

Give an expression for $d H$ and show that

$$
C_{B}=T\left(\frac{\partial S}{\partial T}\right)_{B}
$$

[8 marks]
c) Give an expression for $d G$ and explain why

$$
\left(\frac{\partial S}{\partial B}\right)_{T}=\left(\frac{\partial M}{\partial T}\right)_{B}
$$

d) Show that

$$
\left(\frac{\partial C_{B}}{\partial B}\right)_{T}=T\left(\frac{\partial^{2} M}{\partial T^{2}}\right)_{B}
$$

[6 marks]
e) The susceptibility of the sample is defined as $\chi=M /(V B)$, where V is the volume of the sample, and experiments show that $\chi=\chi_{0} / T$, where χ_{0} is a constant. Also, in the limit of vanishing field $B \rightarrow 0, C_{B} \rightarrow a V / T^{2}$ where a is a constant. Using the previous results, show that

$$
C_{B}=\frac{a+\chi_{0} B^{2}}{T^{2}} V
$$

4) Two identical thermally isolated containers of volume V_{0} are linked by a valve. Initially one container holds one mole of a gas at pressure P_{0}, while the other container is empty.
a) The valve is opened. Explain why the internal energy of the gas does not change.
b) If the gas is ideal, what is the final pressure? Explain your answer.
[5 marks]
c) Suppose that instead the gas satisfies the Van der Waals equation

$$
\left(P+\frac{a}{V^{2}}\right)(V-b)=R T
$$

where a, b are constants. An infinitesimal change in the internal energy is

$$
d U=C_{V} d T+\left[T\left(\frac{\partial P}{\partial T}\right)_{V}-P\right] d V
$$

where C_{V} could be a function of T and V. Show that

$$
d U=C_{V} d T+\frac{a}{V^{2}} d V
$$

[5 marks]
d) Using the commutativity of partial derivatives of U, and the expression for $d U$ given in question c), show that C_{V} does not depend on the volume.
[5 marks]
e) The heat capacity C_{V} is supposed independent of T. Show that, at the end of the expansion, the change in temperature is

$$
\Delta T=-\frac{a}{2 C_{V} V_{0}}
$$

[5 marks]
f) Calculate ΔT, by assuming an ideal gas behaviour as an approximation, for: $a=0.36 \mathrm{~J} \mathrm{~m}^{3} \mathrm{~mol}^{-2}, C_{V}=28.5 \mathrm{~J} \mathrm{~K}^{-1}, P_{0}=1 \mathrm{~atm}$ and the initial temperature is $T_{0}=20^{\circ} \mathrm{C}$.
[5 marks]

